OBSERVATIONS ON TERNARY QUADRATIC DIOPHANTINE EQUATION

$$7x^2 - 3y^2 = z^2$$

Dr. Anita Agarwal

Department of EEE, Tamilnadu College of Engineering, Coimbatore

Recevied: 29 July 2024 Revised: 15 August 2024 Accepted: 25 September 2024

ABSTRACT

The homogeneous cone represented by the ternary quadratic Diophantine equation $7x^2 - 3y^2 = z^2$ is studied for finding its non – zero distinct integer solutions.

keywords: Homogeneous, Ternary quadratic equation, Integral solutions .2010 mathematics subject classification: 11D09

INTRODUCTION

While searching for problems on ternary quadratic equations, the authors came across the paper entitled [1] "On ternary quadratic Diophantine equation $7x^2 - 3y^2 = z^2$ ". It is noted that in [1] the author has given only a few integer solutions. This motivated us for searching other choices of integer solutions to the above equation. Also, the formulae for generating sequence of integer solutions based on a given solution are presented.

METHOD OF ANALYSIS

The ternary quadratic Diophantine equation to be solved is

$$7x^2 - 3y^2 = z^2 \tag{1}$$

Different sets of solutions in integers to (1) are illustrated below:

PATTERN -1:

Assume
$$x = x(a,b) = a^2 + 3b^2$$
, where $a,b > 0$ (2)

It is obvious that $7 = (2 + i\sqrt{3})(2 - i\sqrt{3})$

Substituting (2) & (3) in (1) and applying the method of factorization, one gets $z + i\sqrt{3}y = (2 + i\sqrt{3})(a + i\sqrt{3}b)^2$ (4)

Equating the real and imaginary parts, we have

$$y = y(a,b) = a^{2} - 3b^{2} + 4ab$$

$$z = z(a,b) = 2a^{2} - 6b^{2} - 6ab$$
(5)

Thus (2) and (5) represent non-zero distinct integral solutions of (1) in two parameters.

PATTERN-2:

Instead of (3), Write 7 as
$$7 = \frac{1}{4} \left[(1 + i3\sqrt{3})(1 - i3\sqrt{3}) \right]$$
 (6)

Following the procedure similar to pattern-1, it is found to be

$$y = y(a,b) = \frac{1}{2} [3a^2 - 9b^2 + 2ab]$$

$$z = z(a,b) = \frac{1}{2} [a^2 - 3b^2 - 18ab]$$
(7)

年 2024 體積 52 問題 3 **DOI:** 10.46121/pspc.52.3.2

$$x = x(A, B) = 4A^{2} + 12B^{2}$$

$$y = y(A, B) = 6A^{2} - 18B^{2} + 4AB$$

$$z = z(A, B) = 2A^{2} - 6B^{2} - 36AB$$

Case:2

Let a = 2A + 1, b = 2B + 1

The corresponding non-zero distinct integral solutions of (9.1) are found to be

$$x = x(A, B) = 4A^{2} + 12B^{2} + 4A + 12B + 4$$

$$y = y(A, B) = 6A^{2} - 18B^{2} + 8A - 16B + 4AB - 2$$

$$z = z(A, B) = 2A^{2} - 6B^{2} - 16A - 24B - 36AB - 10$$

PATTERN-3:

In addition to (3) and (6), Write 7 as
$$7 = \frac{1}{4} \left[(5 + i\sqrt{3})(5 - i\sqrt{3}) \right]$$
 (8)

Following the procedure similar to pattern-1, it is observed that

$$y = y(a,b) = \frac{1}{2}[a^2 - 3b^2 + 10ab]$$

$$z = z(a,b) = \frac{1}{2}[5a^2 - 15b^2 - 6ab]$$
(9)

Case:1

Let a = 2A, b = 2B

Thus, the corresponding non-zero distinct integral solutions of (1) are given by

$$x = x(A, B) = 4A^{2} + 12B^{2}$$

$$y = y(A, B) = 2A^{2} - 6B^{2} + 20AB$$

$$z = z(A, B) = 10A^{2} - 30B^{2} - 12AB$$

$$x = x(p,q) = 7p^{2} + q^{2} + 4pq$$

$$z = z(p,q) = 14p^{2} + 2q^{2} + 14pq$$
(13)

Thus (13) and (10) represents non-zero distinct integral solutions of (1) in two parameters.

In addition to (11), 3 may also be expressed in two different ways that are presented below along with their solutions to (1):

Way 1:

Way 2:

$$3 = (2\sqrt{7} + 5)(2\sqrt{7} - 5)$$

$$3 = \frac{1}{9}(2\sqrt{7} + 1)(2\sqrt{7} - 1)$$

$$x = x(p,q) = 14p^2 + 2q^2 + 10pq$$

$$y = y(p,q) = 7p^2 - q^2$$

$$z = z(p,q) = 35p^2 + 5q^2 + 28pq$$

$$3 = \frac{1}{9}(2\sqrt{7} + 1)(2\sqrt{7} - 1)$$

$$x = x(p,q) = 42p^2 + 6q^2 + 6pq$$

$$y = y(p,q) = 63p^2 - 9q^2$$

$$z = z(p,q) = 35p^2 + 5q^2 + 28pq$$

$$z = z(p,q) = 21p^2 + 3q^2 + 84pq$$

PATTERN-5

Introduction of the linear transformations

$$x = u \pm 3v, y = u \pm 7v, z = 2w$$
 (14)

in (1) leads to

年 2024 體積 52 問題 3 **DOI:** <u>10.46121/pspc.52.3.2</u> <u>10</u>

$$w^2 + 21v^2 = u^2 (15)$$

Write (15) as the system of double equations as shown in Table 1 below:

Table 1: System of double equations

System	1	2	3	4	5
u+w	21v	7v	v^2	$7v^2$	$3v^2$
u-w	v	3 <i>v</i>	21	3	7

Solving each of the system of equations in Table 1, the corresponding values of u,w and v are obtained. Substituting the values of u,w and v in (14), the respective values of x and y are determined. For simplicity and brevity, the integer solutions to (1) obtained through solving each of the above system of equations are exhibited.

System:1	1System:2	System:3
x = 14T	x = 8T	$x = 2T^2 + 8T + 14$
y = 18T	y = 12T	$y = 2T^2 + 16T + 18$
z = 20T	z = 4T	$z = 4T^2 + 4T - 20$
System:4	System:5	
$x = 14T^2 + 20T + 8$	$x = 6T^2 + 12T + 8$	
$y = 14T^2 + 28T + 12$	$y = 6T^2 + 20T + 12$	
$z = 28T^2 + 28T + 4$	$z = 12T^2 + 12T - 4$	

PATTERN-6

Rewrite (15) as
$$w^2 + 21v^2 = u^2 *1$$
 (16)

Assume
$$u = u(m, n) = m^2 + 2\ln^2$$
, where $m, n > 0$ (17)

It is noted that
$$1 = \frac{(21r^2 - s^2 + i\sqrt{21}rs)(21r^2 - s^2 - i\sqrt{21}rs)}{(21r^2 + s^2)^2}$$
 (18)

As our interest centers on finding integer solutions, it seen that w and v are integers, when $m = (21r^2 + s^2)M$, $n = (21r^2 + s^2)N$

In view of (14), the corresponding non-zero distinct integral solutions of (1) are given by

$$x = (21r^{2} + s^{2})(M^{2} + 21N^{2}) \pm 3(21r^{2} + s^{2}) \left[2MN(21r^{2} - s^{2}) + 2rs(21r^{2} + s^{2})(M^{2} - 21N^{2}) \right]$$

$$y = (21r^{2} + s^{2})(M^{2} + 21N^{2}) \pm 7(21r^{2} + s^{2}) \left[2MN(21r^{2} - s^{2}) + 2rs(21r^{2} + s^{2})(M^{2} - 21N^{2}) \right]$$

$$z = 2(21r^{2} + s^{2}) \left[(21r^{4} - s^{4})(M^{2} - 21N^{2}) - 84rs(21r^{2} + s^{2})MN \right]$$

REMARKABLE OBSERVATIONS

Figure 1. If the non-zero integer triplet (x_0, y_0, z_0) is any solution of (1) then each of the following three triplets of integer based on x_0, y_0 and z_0 also satisfies (1).

Triplet:1 (x_n, y_n, z_0)

$$x_n = \frac{1}{2\sqrt{21}} \left[3B_n y_0 + \sqrt{21} A_n x_0 \right]$$

$$y_n = \frac{1}{2\sqrt{21}} \left[\sqrt{21} A_n y_0 + 7B_n x_0 \right],$$

$$z_n = z_0$$

where

$$A_n = (55 + 12\sqrt{21})^n + (55 - 12\sqrt{21})^n$$
$$B_n = (55 + 12\sqrt{21})^n - (55 - 12\sqrt{21})^n$$

Triplet:2
$$(x_n, y_0, z_n)$$

$$x_n = \frac{1}{2\sqrt{7}} \left[B_n z_0 + \sqrt{7} A_n x_0 \right]$$

$$y_n = y_0$$

$$z_n = \frac{1}{2\sqrt{7}} \left[\sqrt{7} A_n z_0 + 7 B_n x_0 \right]$$

where

$$A_n = (8+3\sqrt{7})^n + (8-3\sqrt{7})^n$$
$$B_n = (8+3\sqrt{7})^n - (8-3\sqrt{7})^n$$

CONCLUSION

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCE

[1]. R.Nandhini, On Ternary Quadratic equation, Paripex- Indian Journal of Research, Vol 5(3), (2016),66-68

年 2024 體積 52 問題 3 **DOI:** <u>10.46121/pspc.52.3.2</u> 12