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1. INTRODUCTION 

Fishes are among the most important sources of protein, consequently resulting in a substantial increase in fish 

farming or aquaculture, and has become the fastest-growing animal food sector. It is expected to rise to 30 % by 

2030 to meet the increasing population in the Asia-Pacific region (Mohd-Aris et al., 2019). Fish farming includes 

the process of rearing and raising fish for commercial purposes. This sudden and extreme proliferation in fish 

farming businesses has produced apprehension regarding fish health, with disease emergence constituting a 

paramount concern. Diseases are one of the reasons for anticipating the slowing of aquaculture production growth 

rate by 2032 along with factors such as environmental regulations and limited availability of suitable production 

locations (OECD and FAO, 2023). Studies indicate that fish disease has been responsible for approximately 50% 

of overall production losses (Liet al., 2022). The quick spread of these diseases can cause the mass extinction of 

local fish species in a short amount of time, resulting in substantial water contamination and posing a threat to 

other aquatic animals and human health through contact with diseased fish (Aziz & Abdullah, 2021). Several 

bacterial, viral, fungal, and parasitic diseases have been described by researchers (Crane& Hyatt, 2011; 

Novoslavskij et al., 2016; Bohara et al., 2022; Irshath, et al., 2023). Diseases such as Red spot disease, 

Aeromoniasis, Bacterial Gill Disease, Saprolegniasis, White spot disease, and some viral diseases are a few of 

them. Table 1 provides a short description of these diseases along with their causal organisms and physical 

symptoms. These pathogens infect fish when stressed, injured, or living in poor water quality conditions (Winton, 

2001). 

ABSTRACT: 

Background: Detecting and classifying fish diseases is crucial for maintaining the health and sustainability of 

aquaculture systems. This study employs deep learning techniques, particularly Convolutional Neural Networks 

(CNNs), to automate the detection of various fish diseases using image data. 

Methods: The study utilizes a carefully curated dataset sourced from the Kaggle database, comprising images 

representing seven distinct types of fish diseases, along with images of healthy fish. Data preprocessing techniques, 

including resizing, rescaling, denoising, sharpening, and smoothing, are applied to enhance image quality and facilitate 

accurate disease detection. Data augmentation is employed to increase the model's ability to generalize to unseen data. 

The CNN architecture is designed with cascading convolutional layers, ReLU activation functions, and pooling operations 

to extract high-level features associated with fish infections. The model architecture, implemented using the Keras 

Sequential API, includes convolutional layers, max pooling layers, and densely connected layers for classification. 

Results: Experimental results demonstrated promising performance across various disease categories, with high 

accuracy and balanced precision and recall values for most classes. The study also discussed the impact of climate change 

on fish disease incidence and underscores the importance of effective monitoring and management practices facilitated 

by technological innovations such as Big Data, IoT, sensors, and robotics in ensuring sustainable fisheries management. 
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Table 1: Different diseases of fishes 

 
DISEASES PATHOGEN/AGENT CHARACTERISTICS 

BACTERIAL RED 

DISEASE 

Genus Vibrio 
(Vibrio anguillarum) 

Bloody lesions in the musculature of infected fish 
(Takahashi et al., 2017). 

AEROMONIASIS Aeromonas hydrophila Causes small surface lesions, haemorrhagic septicemia, 

ulcers, fin and tail rot; affects carps, eel, channel catfish, 
tilapia, trout, and ayu (Zaheen et al., 2022) 

BACTERIAL GILL 

DISEASE 

Flavobacterium 

branchiophila 

Loss of appetite, mortality of 20-50% in 24 hours, 

extensive clubbing of gill filaments in the microscopic 

examination, lethargy, gasping for air, the proliferation of 

epithelium causing clubbing and fusing (Singh, 1989; 
Starliper, 2012) 

SAPROLEGNIASIS Genus Saprolegnia 

(S. parasitica) 

Manifests as white or grey patches of filamentous 

mycelium on the body or fins of infected fish; prevalent in 

the salmon fish-farming industry (Phillips et al., 2008) 

WHITE SPOT 

DISEASE 

Ichyophthiriusmultifilis Attaches to fish, moves under the skin, feeds on cells and 

body fluids; identified by changes in behaviour (rubbing 

against stones, swimming disorientation), tightly folded 
fins, small white cysts (Faruk,2018). 

The identification of fish diseases can be done by physical examination as the changes caused due to diseases are 

reflected in morphological changes in organs and impairment of their functions, for instance, the changes in the 

morphology of gills may indicate the health of fish and level of pollution (Noga, 2010). Traditional diagnostic 

methods including the dissection of fish tissues under laboratory setups are time-consuming and expensive. 

However, in situ diagnosis of diseases can help in very early detection of diseases allowing timely interventions, 

but necessitates sophisticated technological infrastructure. Moreover, the manifold nature and heterogeneity of 

fish diseases exacerbate diagnostic challenges, compounded by the limited diagnostic accuracy of conventional 

physiological indicators. Aquaculture has seen notable technological advancements recently, allowing the 

industry to increase current production levels to meet the growing demand for aquatic products. The increased 

growth in this sector has resulted in the accumulation of huge amounts of data and has led to the embracing of 

smart AI-based technologies such as machine learning and data mining to achieve sustainable aquaculture 

production. The present study aims to develop a method for disease detection by using a machine-learning 

technique using fish images. The next section provides a brief description of how AI and machine learning are 

being utilized in aquaculture to enhance productivity. 

 

2. REVIEW OF LITERATURE 

Artificial intelligence (AI) and machine learning (ML) have found applications in animal tracking (Alzubi, 2023), 

disease detection based on their behavior (Kavlak et al., 2023), quality assessment of processed meat (Huang & 

Gu, 2022) and many more. They have also been explored in fisheries too, and utilized in many endeavors including 

population tracking, disease detection, automated feeding systems, behavior analysis, species identification etc. 

Gómez-Vargas et al. (2023) suggested tracking population changes of fishes, particularly in species with 

conservation concerns, like marine organisms such as the undulate skate. To address the difficulty of accessing 

these organisms and obtaining sufficient training samples for photo identification, the researchers proposed using 

deep learning techniques. They specifically developed a Siamese neural network methodology to overcome the 

challenge of having limited training data. Their approach yielded promising results, correctly identifying 70% of 

individuals in the test set, including recaptures. Likewise, Jenrette et al. (2022) developed a Shark Detector tool 

for the classification of sharks using videos and images with the application of transfer learning and convolutional 

neural networks (CNNs) and achieved impressive accuracies. The tool was capable of classifying 47 species of 

sharks, achieving high accuracy in locating sharks in baited remote camera footage and YouTube videos (89%), 

as well as in classifying them to the species level (69%). The study emphasized the significance of media-based 

remote monitoring in shark observation. Notably, the authors suggested that the inclusion of more images in the 

training dataset would improve the prediction accuracy, highlighting its adaptability and potential for further 

improvement. 
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The application of ML in aquaculture and capture fisheries was discussed in an elaborative manner by Gladju, 

Kamalam & Kanagaraj (2022). Capture fisheries refers to the harvesting of fish from wild populations. Data on 

fish catch, sightings, and environmental conditions can be used to create models that estimate fish stock sizes and 

predict future trends (Rosenberg et al., 2014; Bastardie et al., 2014; Sheaves et al., 2020). This information can 

be used to set sustainable fishing quotas. Machine learning can be used to analyze sonar data to identify fish 

schools and optimize fishing gear and strategies. It can also be used to monitor fishing activity and ensure 

regulation compliance. Cossa et al. (2023) utilized drones and machine learning to develop a monitoring method 

to identify dugong feeding trails and seagrass beds accurately. Results indicated a significant overlap between 

dugong foraging areas and gillnet fishing grounds, with higher fishing activity correlating with increased dugong 

feeding trails. Particularly, the study emphasized the potential of drones and machine learning in studying animal 

behavior in remote areas and highlighted the need for effective management strategies to mitigate the accidental 

bycatch of dugongs, suggesting tighter restrictions on the use of gillnet as a crucial step in marine conservation 

efforts. 

 

Data on fish populations, other marine life, and environmental conditions can be used to create models that assess 

the health of marine ecosystems. This information can be used to develop strategies to protect ecosystems and 

ensure sustainable fishing practices. Hu et al. (2020) explored the application of machine learning techniques to 

understand the complex relationships between environmental factors and fish communities in river ecosystems, 

aiming to facilitate sustainable ecosystem management. Machine learning methods were employed to analyze 

diverse datasets by identifying critical environmental variables, and an adaptive network-based fuzzy inference 

system (ANFIS) was utilized to estimate fish biodiversity. Strong correlation between model estimations and 

biodiversity indices, with certain environmental factors such as biochemical oxygen demand (BOD), water 

temperature, total phosphorus (TP), and nitrate-nitrogen (NO3–N) was revealed. In addition, ML can be used to 

improve post-harvest processes, quality assurance, and marketing in the fish production industry (Nimbkar et al., 

2023; Kaur et al., 2023). 

 

In the domain of aquaculture, data mining and ML are used in water quality and rearing environment control. 

Sensors can monitor water quality parameters like pH, oxygen levels, and ammonia. Machine learning algorithms 

can then be used to adjust feeding, aeration, and other parameters to keep these levels within optimal ranges. For 

example, Lee et al. (2000) applied a Fuzzy logic-based expert system in the bioreactors for controlling the process 

of denitrification which is a process of converting nitrate (NO -) produced as a toxic by-product by fish into 

Nitrogen gas which helps in maintaining the water quality. The use of fuzzy logic in control systems is ideal for 

managing complex systems. It is a rule-based approach that involves a process of inference to determine the 

significance of a problem or the urgency of a control action (Liu, 2004). 

Utilizing machine learning, data about fish growth can be analyzed, feed intake can be tailored according to the 

need, minimizing waste and maximizing the growth of the fish. Adegboye et al. (2020) introduced an intelligent 

fish-feeding system meant for measuring fish feed intake by predicting fish activities. It utilized fish behavioral 

vibration analysis and artificial neural networks (ANN) to use data from various sensors. A new Chain Code 

generator algorithm was employed to extract activity vectors, which were then processed using DFT (Discrete 

Fourier Transform) and evaluated by an artificial neural network (ANN). They achieved an accuracy of 100% 

outperforming the accuracy of 35.60% achieved with direct acceleration and angular velocity data, hence proving 

the system as a viable solution for automated fish feeding based on fish behavior analysis. 

 

Tracking fish growth, movement, and behavior can also help in detecting signs of stress or diseases allowing 

farmers to take early action and machine learning algorithms can prove extremely efficient in doing the task. Li 

et al. (2022) proposed a method of recognizing abnormal behavior where image processing was used to extract 

the information about the moving object and its position which was enhanced using mosaic image fusion. Finally, 

by adding three new features to YOLOv5, i.e. BCS-YOLOv5 was developed which produced as average accuracy 

of 96.69 % at 45 frames per second across four typical behavior datasets. Proving to be an appropriate method for 

extraction of location information and detecting similar anomalous behavior helping in real-time tracking of fish 

abnormal behavior. 

 

In recent years, image-based disease-diagnostic techniques have garnered widespread adoption for the assessment 

and identification of fish diseases. AI algorithms and ML methods have been extensively used for decision-making 

and classification tasks. These intelligent algorithms can learn the correct classification from the parameter space 

of the system using real image datasets, enabling the identification of deviations from selected configurations with 
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high accuracy. Mamun et al. (2023) employed an image segmentation technique to first locate the diseased areas 

on fishes and then employed several pre-trained deep learning algorithms (VGG-16, VGG-19, ResNet 50 etc.) of 

Convolutional Neural Networks for classification. In addition, they used an ensemble model in which a 

combination of various pre-trained models was applied. They found that the ensemble model (VGG-16 + VGG- 

19 ensemble models) was able to differentiate three classes of diseases of fish namely Red Spot, White Spot, and 

Black Spot from the Healthy fish with the highest accuracy of 99.64%. Similarly, Barik et al. (2023) attempted to 

classify the lesion areas present in fishes with the Red Spot, White Spot, and Black Spot diseases. They utilized 

edge-based segmentation, grey threshold-based segmentation, hue saturation, and value-based color segmentation 

employing k-means clustering to fish sampling for the spontaneous detection of lesion regions. 

Malik et al. (2017) proposed a method based on image processing which included segmentation and edge detection 

to recognize the Epizootic Ulcerative Syndrome (EUS) disease in fish. The FAST (Features from Accelerated 

Segment Test) feature extractor was employed to extract features from the fish images with symptoms of the 

disease. Principle Component Analysis (PCA) was employed to reduce the dimensions and retain usefult 

information from the extracted features. A Neural Network machine learning algorithm was subsequently was 

used which provided a high in the classification of EUS-infected and non-infected fish images. 

 

Recently, Pauzi et al. (2021) presented a review paper on fish disease detection using image processing techniques 

which included rule-based expert systems, machine learning, deep learning, statistical methods, and hybrid 

methods.. They discussed the performance of these methods and their suitability for other domain applications 

and highlighted the need for improvement in image processing approaches to further enhance performance in fish 

disease detection. They concluded that image processing can provide a more reliable and efficient alternative to 

manual techniques conducted by fish experts, allowing for early detection and prevention of diseases. The 

development of image processing techniques can contribute to more advanced and automated detection methods 

with higher accuracy. 

 

In the present paper a new algorithm is proposed to detect 6 fish diseases and separate them from the healthy 

fishes by using Convolutional Neural Network. 

 

3. METHODOLOGY 

 

3.1 Dataset selection 

The Kaggle database is used to collect the dataset. It was chosen with care to create a deep learning model that 

would recognize fish skin diseases. It is divided into seven groups, each of which stands for a distinct type of fish 

disease. The count of associated images for diseases is as follows: Bacterial diseases - Aeromoniasis (51 images), 

Bacterial gill disease (58 images), Bacterial Red spot disease (55 images), Fungal diseases - Saprolegniasis (49 

images), Healthy Fish (220 images), Parasitic diseases (40 images), and Viral diseases - White spot (48 images). 

The few diseased fish images from the dataset are presented in Figure 1. This diverse dataset serves as a valuable 

resource for training and evaluating Convolutional Neural Network algorithms, enabling precise disease detection 

in aquaculture. Images are split into 80:10:10 ratios for training, validation, and testing in this proposed study. 

These ratios are used to evaluate the classification performance according to training and testing accuracy. 

  
Figure 1. Diseased fish images. 

3.2 Data Preprocessing 

Within a deep learning model, the resize and rescale components are the first step of the preprocessing stage. This 

step is essential to ensure that the images of input data are in the same sizes. Improving image quality for disease 
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detection in fish by eliminating unwanted elements or noise is an important task. Image pre-processing must be 

carried out before sending the data for training in the CNN model. Effective pre-processing improves image 

segmentation, detection, recognition, and classification, which identify fish diseases more accurately. In 

aquaculture, various techniques such as minimizing noise, sharpening, and smoothing, are frequently used for 

image pre-processing. Image quality can be effectively maintained by denoising techniques such as the 

combination of Haar wavelet transform and histogram equalization (Atteya et al., 2016). Creating an algorithm 

that handles light absorption, dispersion, and noise is a big challenge. A variety of research needs could be satisfied 

by intelligent image-noise reduction, which combines artificial intelligence and decision-support methods to 

reduce noise and enhance image quality. Images must be sharpened to enhance contours and edges. It can 

be carried out by high-pass filtering. Many techniques have been proposed for image sharpening, including 

Laplacian sharpening, histogram equalization, and filtering in the transform domain. However, preventing ringing 

around edges and noise augmentation is a significant difficulty. In comparison to sharpening, image smoothing 

minimizes unexpected changes, increases overall image quality, and gradually modifies brightness. When disease 

identification does not depend on edge information, smoothing is useful even though it may soften edges. Various 

techniques have been used, such as the Savitzky-Golay algorithm for multispectral images and the two- 

dimensional exponential smoothing for echo fish images. By boosting the accuracy of subsequent detection, these 

approaches set up images for feature extraction. 

 

3.3 Data Augmentation 

The data augmentation technique adds a variety of original images to the training dataset to increase the model's 

ability to fit previously unknown data. By adding controlled randomization to the model through data flipping and 

rotation, overfitting is reduced. In the present work, the first of two sequential layers, RandomFlip (horizontal and 

vertical), flips input images horizontally and vertically to introduce randomness. Simulating real-world 

variability adds a variety of viewpoints and orientations to the training dataset. RandomRotation(0.2), the second 

layer, gives each image a random rotation of up to 0.2 radians. By rotating the dataset, this rotation exposes the 

model to more variances in object angles. 

 

3.4 Feature Extraction 

The main objective of the proposed CNN is to recognize the high-level features associated with the infections in 

Fish that are depicted in the image. The CNN architecture makes use of multiple cascading convolutional layers. 

Non-linear convolution and activation functions are incorporated into each convolutional layer design through the 

use of ReLU and pooling methods. The CNN's input consists of training and test images with a height and width 

of 256 x 256 pixels. 

the output (y) of the convolutional layers is given by the expression 
𝑋 𝑌 

𝑦 = 𝑓 (𝑎𝑙 + ∑ ∑ 𝑔𝑙 ℎ𝑙−1) (1) 
𝑥,𝑦  𝑥,𝑦 

𝑥 𝑦 

The variables X, Y denote the size of the filters (height and width), while al denotes the convolutional layer's bias. 

The output of preceding convolutional layers is represented by hl−1, gl denotes the weight of the convolutional 

layer. The non-linear ReLU function f(y) is defined as 
𝑦, 𝑦 > 0, 

𝑓 𝑦 = 𝑅𝑒𝐿𝑈 𝑦 = {
0, 𝑦 ≤ 0. 

(2) 

With the specific training set, the parameter δ could be calculated by utilizing the highest estimate. It is described 

as 
𝑁 

𝐸(𝛿) = 𝖦 𝑓(𝑦)𝛿𝑛 

𝑛=1 

(3) 

In equation 3, E(δ) is called highest estimation parameter. In this corresponds the vector value is calculated 

using equation 4. 
𝑛 

𝑤𝑛 = ∑ 𝑤𝑛 (4) 
𝑗=1 

The next step is pooling, which makes the feature maps smaller in size and less computationally demanding on 

the network. The convolutional layer generates features that are precisely located for subsequent operations. In 

the output of the Max-pooling layer, several pooling techniques, such as the Max-pooling method, are available 

to choose the most important features from the previous feature map. The retention of features and patterns is not 

compromised in the process of this pooling-based reduction. After a sequence of convolution layers, ReLU 
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activation, and pooling operations, flattening is the next step. This process creates a feature vector from the 2D 

feature matrix, which is then fed into a classifier model. Providing the classifier with the flattened vectors is the 

main objective of the fully connected process. The flow chart of process used in this study is presented in the 

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow chart of proposed CNN model. 

 

3.5 Algorithm of Proposed System 

Using the Keras Sequential API, a neural network architecture is used in the proposed approach. The convolutional 

layers and tightly coupled layers of the model implied healthy and diseased image categorization. There are 

several convolutional layers in the architecture. The first convolutional layer (conv2d) starts the sequence with 

64x3x3 filters and uses an activation function called a Rectified Linear Unit (ReLU) on input data with dimensions 

of (256, 256, 3). Convolutional Layers 2 through 6 (conv2d_1 to conv2d_5) are the next layers that add more 

filters and their matching ReLU activations. Max pooling layers, MaxPooling Layers 1 through 6 

(max_pooling2d_1 to max_pooling2d_5), are used in between these convolutional layers to slowly decrease 

spatial dimensions. The 2D output is converted into a 1D array with 2048 items by a Flatten Layer (flatten), which 

comes after the convolutional and max pooling layers. Dense Layer 1 (dense) and Dense Layer 2 (dense_1), which 

are fully connected layers, perform the same task. Dense Layer 2 is the output layer, containing 7 neurons that 

represent the number of classes in the classification work, whereas Dense Layer 1 consists of 64 neurons with 

ReLU activation. This layer creates class probabilities using a softmax activation function. There are 2,125,191 

trainable parameters in all, according to the model summary, which also reveals the number of parameters in each 

layer. All things considered, the architecture is optimized for image classification tasks, using fully connected 

layers to make predictions and convolutional operations to extract structured features (Figure 3). 
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Convolution 

 
Flatten Layer 

Convolution  
Convolution 

 
Output 

 
 
 

 

Max pooling Max pooling 

Feature Map 

Feature Extraction 

 
Max pooling 

Figure 3. Architecture of CNN model used for classification of healthy and diseased fishes. 
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3.6 Performance Evaluation Method 

Accuracy in classifying the dataset serves as a measure for the detection and classification model developed in 

this study. The CNN model measures the performance in terms of true and false classifications. All classifiers are 

evaluated using statistical metrics, such as accuracy, precision, recall, F1-Score and error rates. Within the test 

data model, a confusion matrix table displays the counts of instances that were correctly and incorrectly identified. 

The percentages of correctly identified sample images to all sample images are used to calculate recognition and 

classification accuracy. The equation describes the accuracy of identification and classification process. 
𝑇𝑃 + 𝑇𝑁 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

 
 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 
𝑇𝑃 

 
𝑅𝑒𝑐𝑎𝑙𝑙 = 

𝑇𝑃 + 𝐹𝑃 
𝑇𝑃 

 
 

𝑇𝑃 + 𝐹𝑁 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 

 
4. RESULTS AND DISCUSSION 

The PYTHON programming language was used to evaluate fish disease detection and classification. The 

experiment included seven categories of images and was designed to demonstrate the proposed image 

classification method. During the experimentation phase, the suggested Convolutional Neural Network (CNN) 

was utilized by the proposed system to extract relevant image features from the received image data. The loss and 

accuracy of the model over epochs are presented in Figure 4. It took 100 epochs to complete the training process, 

where each epoch represents one iteration through the training dataset. The reported training loss is 0.3818, while 

the validation loss is represented by the value 0.5629. Significantly, the training loss quantifies the error on the 

training dataset, whereas the validation loss evaluates the model's performance on a separate validation dataset. A 

reduced loss value suggests that the model is performing better. Additionally, the accuracy metrics are provided, 

indicating a validation accuracy of 0.8438 and a training accuracy of 0.8338. Higher accuracy values denote better 

model performance as measured by the percentage of correctly classified instances during both training and 

validation. 

 

 

 

 

 

 

 

 

 

 
Epoch Epoch 

Figure 4. Loss and Accuracy measurements of training and validation datasets. 

The model's predictions and confidence scores are displayed for each of the multiple instances in the provided 

classification results. The model correctly identified classes like Healthy Fish, White Spot disease, and 

Aeromoniasis with confidence scores of 97.86%, 100.0%, and 100.0% (Figure 5). 
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Actual: Healthy Fish 

Predicted: Healthy Fish. 

Confidence: 97.86% 
 

 
 

Actual: Gill disease, 

Predicted: Parasitic disease. 

Confidence: 47.15% 

Actual: White Spot disease, 

Predicted: White Spot disease. 

Confidence: 100.0% 
 

 

Actual: Healthy Fish, 

Predicted: Saprolegniasis. 

Confidence: 48.46% 

Actual: Aeromoniasis, 

Predicted: Aeromoniasis. 

Confidence: 100.0% 
 

 

Actual: Gill disease, 
Predicted: Gill disease. 

Confidence: 93.39% 

  
 

Figure 5. Confidence score of actual and predicting healthy and diseased fishes. 

In most cases, the model has high confidence levels and makes accurate predictions. Misclassifications happen 

occasionally, as evidenced by the predictions for Healthy Fish (48.46% confidence) as Saprolegniasis and Gill 

disease (47.15% confidence) as Parasitic disease. The model consistently performs well in correctly identifying a 

number of fish diseases in spite of these misclassifications, demonstrating its efficacy in the classification task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Confusion matrix for healthy and diseased categorization. 

The confusion matrix summarizes the performance of model across various classes (Figure 6). The predicted 

classes are represented by each column, and the actual classes are indicated by each row. The diagonal elements 

represent the accuracy of the model for each class by denoting the number of correct predictions. The model 

accurately detects, 24 cases of Healthy Fish, 7 cases of Viral White spot disease, and 6 cases of Bacterial gill 

disease. Some cases of Bacterial red spot disease have been misclassified as Funagal Saprolegniasis disease, and 
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one instance of Funagal Saprolegniasis disease has been misclassified as Viral White spot disease. All things 

considered, the confusion matrix offers a thorough assessment of the functionality of model, highlighting both 

accurate classifications and areas that might require improvements. 

 

Table 2. Performance matrices. 

Labeling Precision Recall F1-Score Support 

     

Bacterial Red Spot disease 1.0000 0.8333 0.9091 6 

Bacterial Aeromoniasis disease 1.0000 1.0000 1.0000 5 

Bacterial gill disease 0.8571 0.6667 0.7500 9 

Fungal Saprolegniasis disease 0.8000 0.5714 0.6667 7 

Healthy Fish 0.8571 0.9600 0.9057 25 

Parasitic disease 0.5000 0.6667 0.5714 3 

Viral White Spot disease 0.7000 0.7778 0.7368 9 

     

accuracy   0.8281 64 

macro avg 0.8163 0.7823 0.7914 64 

weighted avg 0.8366 0.8281 0.8259 64 

Table 2 presents classification metrics that provide a thorough evaluation of the model's performance across 

various disease categories. The disease known as bacterial aeromoniasis show recall and precision, with an F1- 

Score of 100%. Additionally, Bacterial Red Spot disease exhibits a balanced F1-Score of 90.91% and precision 

of 100%, demonstrating the model's efficacy in correctly identifying cases of these diseases. Another class that 

shows promise is Healthy Fish, with a well-balanced F1-Score of 90.57%, recall (96.00%), and precision 

(85.71%). However, the F1-Score, recall, and precision values for parasitic disease are lower at 50.00%, 66.67%, 

and 57.14%, respectively. The performance of viral white spot disease is balanced, showing a good F1-Score of 

73.68%, recall of 77.78%, and precision of 70.00%. Overall, the model shows different levels of ability in different 

classes, highlighting the significance of taking particular metrics into account for every disease category during 

the evaluation process. 

 

 
ROC Curve (Bacterial Red Spot Disease) (AUC=0.9821) 

ROC Curve (Bacterial Seromoniasis Disease) (AUC=1.0000) 

ROC Curve (Bacterial gill Disease) (AUC=1.0000) 

ROC Curve (Fungal Saprolegniasis Disease) (AUC=1.0000) 

ROC Curve (Healthy Fish) (AUC=0.9958) 

ROC Curve (Parasite Disease) (AUC=0.9038) 

ROC Curve (Viral White Spot Disease) (AUC=0.9821) 

Random 
 
 
 
 
 
 

 

Figure 7. ROC curve with AUC values. 

Comparing various disease categories using ROC curves and AUC values demonstrates the binary classification 

performance of the model (Figure 7). Specifically, significant discrimination is indicated by AUC values of 1.0000 

for Bacterial Gill Disease and Bacterial Aeromoniasis Disease. By comparison, Parasite Disease exhibits good 

discriminatory ability (AUC=0.9038), but introduces a small trade-off between True Positive and False Positive 

Rates. Viral White Spot Disease and Bacterial Red Spot Disease both have AUCs of 0.9821, indicating arbitrary 

behavior. The model distinguishes between Healthy Fish with remarkable accuracy, as evidenced by its high True 

Positive Rate and low False Positive Rate, as well as its high AUC of 0.9958. Fungal Saprolegniasis Disease also 
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shows perfect discrimination, with an AUC of 1.0000. Finally, this comparative analysis demonstrates the 

complex performance of model, demonstrating differing levels of discriminative capacity across various disease 

classes. This information is important for evaluating the efficacy of proposed model under various diagnostic 

conditions. 

The incidence of diseases in fish influenced by changing climate has been increasing. The changing temperature 

due to climate change affects the vulnerability of fish to pathogens, making them more susceptible to diseases. 

Warmer conditions may even facilitate the establishment of exotic diseases as rising temperatures accelerate the 

replication rate, virulence, and transmission of pathogens among various species (Maulu et al., 2021; King et al. 

2023). Likewise, increased rainfall may lead to the infiltration of invasive species and a decline in water quality 

due to the mixing of pond water with wild environments (Havel et al., 2015). In addition, the emergence of fish 

diseases in aquaculture can be associated with the storage processes, handling practices, and environmental factors 

which can influence microbial composition (Novoslavskij et al., 2016). This underscores the need for effective 

monitoring and management practices to detect and mitigate changes in microbial flora to prevent fish diseases in 

aquaculture setups. Innovations such as Big Data, the Internet of Things (IoT), sensors, and robotics have enabled 

the development of more efficient and precise monitoring equipment. These technologies are becoming 

increasingly compact and affordable, fostering their widespread adoption. However, their broader utilization is 

impeded by challenges including initial costs, complex data requirements, issues with data sharing among fisheries 

management authorities, and a shortage of individuals trained to operate these tools effectively. Addressing these 

challenges is crucial to fully leverage the potential of technological innovations in ensuring sustainable fisheries 

management practices. 

 

5. CONCLUSION 

The use sequential CNN model involving image processing technology in aquaculture is examined in this article, 

with a focus on the use of image analysis for fish disease detection. With a focus on deep learning systems and 

automatic image-based diagnostic techniques, it provides a summary of important technical approaches. Because 

of a particular sequential process, CNN model can detect disease in fish with high accuracy based on information 

or images, but their diagnostic speed and capacity to identify unknown diseases are limited. The Python 

programming language is used to evaluate CNN's ability to extract important characteristics from fish in seven 

different disease categories. After 100 training epochs, the model's reported overall accuracy was 82.81%. The 

resulting analysis showed that, even with a few rare misclassifications, the model had a significant confidence 

score and accurate predictions for a variety of diseases. Confusion matrix, ROC curves, and AUC values are used 

to investigate a comparative analysis of disease categories to demonstrate the capacity of the model to make 

distinctions. 

 

6. LIMITATIONS AND FUTURE WORK 

Standardized and common datasets for fish diseases must be created, and current automatic feature-extraction 

techniques like convolutional neural networks (CNN) must be enhanced. Standardizing disease criteria in the 

dataset and integrating the Internet's human-machine interface to enable social sharing of the dataset is essential 

for diagnosing a wide range of diseases on a large scale in the future. To analyze unique features linked to various 

diseases and provide a dependable and accurate diagnostic approach, deep learning is essential. Additionally, the 

application of data fusion techniques, including data layer information fusion, feature layer information fusion, 

and decision layer information fusion, can be advantageous in a range of situations. Integrating information from 

various sensors increases the precision of diagnosis by simultaneously identifying internal tissues, behavior, and 

the exterior of the body. This approach ensures a more secure and efficient diagnostic process by advancing a 

comprehensive understanding of fish health. 
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