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ABSTRACT: 

This study presents the design and development of an AI-based software module for predicting fuel consumption 

at liquid fuel stations in Iran, with the aim of strengthening the availability dimension of national energy security. 

Iran currently consumes over 110 million liters of gasoline per day, with an annual growth rate of about 4.5%, 

making accurate forecasting essential for sustainable energy management. The study evaluates several forecasting 

models, including ARIMA, LSTM, CNN, and hybrid approaches, and introduces a novel Fuzzy Fourier Fibonacci 

(FFF) model. The FFF model, which integrates Fourier Transform, Fuzzy Logic, and the Fibonacci Sequence, 

demonstrates superior predictive performance, achieving an RMSE of 0.045, MAE of 0.035, and R² of 0.98. In 

comparison, traditional ARIMA models produced an RMSE of 0.085 and R² of 0.89. These results show that the 

FFF model more effectively captures both linear and non-linear patterns in consumption data. By enabling more 

precise forecasts, the proposed module can help optimize distribution across more than 4,000 fuel stations 

nationwide, reducing shortages and improving reliability. Although renewable energy sources are expanding 

globally, fossil fuels remain dominant in transportation, making advanced forecasting tools crucial. The proposed 

AI-driven module offers not only a practical solution for Iran but also a scalable framework for other regions 

facing similar energy security challenges. 

INTRODUCTION 

 

The growing global demand for energy, particularly liquid fuels like gasoline [31] and diesel, has become a pivotal 

challenge for emerging economies such as Iran. Energy security, which includes ensuring an uninterrupted, 

affordable, and reliable supply of energy resources, is critical for maintaining the stability of national economies 

and safeguarding industries. In recent years, with the increasing consumption of petroleum products, efficient 

forecasting of fuel demand has become an essential component of energy management strategies. 

 

Iran, with its vast oil reserves, has a significant reliance on petroleum products, which constitute a large part of its 

energy consumption. According to the International Energy Agency (IEA, 2022), Iran's daily consumption of 

gasoline increased from 85 million liters in 2020 to over 110 million liters in 2022, with an expected annual 

growth rate of 4.5%. This rise in fuel consumption has highlighted the urgent need for advanced forecasting 

models that can predict demand and optimize distribution effectively. In addition, recent data from the Iranian 

National Oil Products Distribution Company reveals that, despite a steady increase in production, the country 

struggles with maintaining a balance between supply and demand, leading to occasional shortages and 

inefficiencies in fuel delivery. 

 

The role of Artificial Intelligence (AI)[15] in enhancing forecasting accuracy has become increasingly important. 

Traditional forecasting methods, such as AutoRegressive Integrated Moving Average (ARIMA), have been 

widely used to predict energy consumption. However, these models have limitations in capturing complex non-

linear relationships and the impact of external factors such as seasonal fluctuations or socio-economic changes 

([32]). On the other hand, machine learning (ML) algorithms[25,26,28], including Long Short-Term Memory 
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(LSTM) networks, Convolutional Neural Networks (CNNs), and hybrid models that combine these techniques 

with classical time-series methods, offer superior performance in terms of accuracy and flexibility ([4]). 

LSTM, for instance, is particularly effective in capturing long-term dependencies and sequential patterns in data, 

making it highly suitable for time-series forecasting of fuel consumption. In a study by [33], LSTM-based models 

achieved an R² of 0.92 in forecasting fuel efficiency for vehicle fleets, outperforming traditional ARIMA models. 

In a similar context, CNNs have demonstrated strong capabilities in recognizing patterns from large datasets, 

while transformers, integrated with LSTM, provide significant improvements in handling large-scale sequential 

data with attention mechanisms. These innovations can substantially enhance the accuracy of fuel demand 

forecasts, especially when combined with real-time telemetry data from fuel stations. 

 

In the context of Iran, the integration of AI-driven prediction models is crucial for improving energy security. 

According to the Energy Security Indicators by the Joint Research Centre ([16]), one of the key dimensions of 

energy security is the availability index, which measures the reliable and uninterrupted supply of energy resources. 

This study focuses on improving this index by developing a software module that integrates advanced AI models 

with real-time data collected from fuel stations. Such integration allows for accurate predictions of fuel 

consumption, which, in turn, aids in the strategic management of supply chains and reduces the risk of fuel 

shortages. 

 

Recent advancements in AI-based forecasting systems have been implemented in several countries to optimize 

fuel distribution and improve the availability index. For example, a study conducted in the United States ([33]) 

demonstrated how AI-based models reduced fuel supply discrepancies by 12% annually through predictive 

analytics and automated decision-making. In Iran, similar systems can enhance fuel distribution across the 4,000 

fuel stations managed by the National Iranian Oil Products Distribution Company, which are spread across 32 

regions and 220 zones. 

 

Furthermore, integrating real-time data from systems such as Supervisory Control and Data Acquisition 

(SCADA) and telemetry networks will allow for dynamic and on-the-fly forecasting, which is essential for 

adapting to sudden changes in fuel demand. This approach will not only improve the accuracy of fuel consumption 

forecasts but will also help identify potential bottlenecks in the fuel supply chain, leading to timely adjustments 

in fuel deliveries, especially in high-demand periods such as holidays or during economic surges. 

 

As fuel consumption in Iran is projected to rise by 4.5% annually until 2050 ([17]), it is crucial to implement such 

AI-driven systems to avoid supply and demand imbalances. This research aims to bridge the gap by designing and 

developing an AI-based software module that leverages cutting-edge machine learning algorithms for more 

accurate predictions and real-time decision-making. By enhancing the availability index, this module will 

contribute to the long-term stability of Iran's energy security and its overall energy policy. 

 

In conclusion, as the demand for petroleum products in Iran continues to rise, the need for advanced predictive 

models has become critical. By combining state-of-the-art AI techniques with real-time data from Iran's fuel 

stations, this study seeks to provide a reliable solution for forecasting fuel consumption and enhancing the 

availability index of Iran’s energy security. The expected outcome of this research is not only to improve fuel 

distribution efficiency but also to provide a framework [35] for sustainable energy management in the future. 

 

LITERATURE REVIEW 

 

In the context of increasing global energy demand, particularly the consumption of petroleum products, accurate 

forecasting of fuel consumption has become a key challenge for both developed and emerging economies. 

Predicting the future demand for fuels such as gasoline, diesel, and natural gas [24] is essential for the efficient 

management of resources, ensuring energy security, and minimizing disruptions in supply chains. The importance 

of accurate fuel consumption forecasting is particularly evident in countries like Iran, where petroleum products 

constitute a significant portion of the energy mix and are central to transportation, industry, and economic 

development. 

 

Fuel consumption forecasting plays a crucial role in several areas, including: 

 Energy Policy and Planning: Governments rely on accurate fuel consumption forecasts to formulate 

energy policies that ensure sustainable energy supply, manage energy reserves, and design infrastructure 

projects that meet future demand. 
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 Economic Stability: Accurate forecasting helps avoid economic disruptions caused by energy shortages 

or surpluses. For example, unexpected spikes in fuel demand can lead to supply shortages, which, in turn, 

result in higher prices, inflation, and decreased industrial productivity. 

 Environmental Management: Accurate fuel consumption predictions enable better environmental 

planning, such as emissions reduction strategies and the transition to renewable energy sources. Fuel 

demand forecasts help in aligning energy consumption with environmental regulations and climate goals. 

 

Traditional methods for forecasting fuel consumption include regression analysis, exponential smoothing, and 

ARIMA (AutoRegressive Integrated Moving Average) models. These approaches have been widely used due 

to their simplicity and effectiveness in handling time-series data. However, these methods often fail to capture the 

complex and non-linear relationships that may exist in the data, especially when multiple external factors such as 

economic growth, population changes, and technological advancements are involved. 

 

The emergence of Machine Learning (ML) and Intelligence [15]  (AI) has revolutionized the field of fuel 

consumption forecasting. Unlike traditional methods, ML models can learn from large datasets and identify hidden 

patterns in the data without being explicitly programmed to do so. Among the various ML models, Artificial 

Neural Networks (ANN), Long Short-Term Memory (LSTM) networks, and Convolutional Neural Networks 

(CNN) have gained significant attention due to their ability to handle non-linearities, time-series dependencies[10-

14], and large volumes of data ([4]). These models are particularly suited for fuel consumption forecasting, as 

they can process a variety of input variables and provide more accurate predictions compared to classical time-

series models. 

 

Advantages of AI-based Models 

The main advantages of using AI-based models for fuel consumption forecasting include: 

 Handling Complex Data: AI models are particularly effective in managing and predicting complex data 

with multiple influencing factors. For example, factors such as fuel price [8] fluctuations, seasonal 

variations, and socio-economic trends can be incorporated into machine learning models, enhancing their 

accuracy[2]. 

 Real-Time Predictions: AI-based models can leverage real-time data from sensors, Supervisory 

Control and Data Acquisition (SCADA) systems, and telemetry systems. These systems continuously 

collect data from fuel stations, providing up-to-date consumption statistics that can be used to predict 

future demand and make real-time adjustments. 

 Improved Accuracy: Studies have shown that AI-based models, especially those using deep learning 

techniques like LSTM and CNN, can outperform traditional forecasting methods by reducing the mean 

absolute error (MAE) and root mean square error (RMSE) ([33]). These models are able to predict not 

only short-term fluctuations but also long-term trends, offering more reliable forecasts for fuel 

consumption. 

 

As fuel consumption is projected to continue rising in the coming decades, traditional forecasting models may no 

longer suffice. For instance, the consumption of liquid fuels like gasoline in Iran is expected to grow by 4.5% 

annually until 2050, creating a demand for more advanced predictive tools to manage this growth ([18]). AI-based 

models, by analyzing historical data, external factors, and real-time consumption patterns, can provide the insights 

necessary for efficient energy planning and security. 

 

Time-series forecasting is one of the most commonly used methods for predicting future values based on historical 

data, particularly in industries like energy, where patterns of consumption are often repeated over time. In the 

context of fuel consumption, time-series models aim to capture the inherent trends, seasonal fluctuations, and 

cyclic patterns in fuel demand. These models are essential for understanding how consumption changes over time 

and for predicting future demand, allowing for more accurate planning and resource allocation. 

 

ARIMA (AutoRegressive Integrated Moving Average) Model 

The ARIMA model is one of the most widely used time-series forecasting techniques, particularly for data that 

shows a linear trend and stationary behavior. It combines three key components: 

 Autoregression (AR): Uses the relationship between an observation and a number of lagged 

observations (past values). 

 Integrated (I): Involves differencing the data to make it stationary, i.e., removing trends or seasonality. 

https://pspac.info/index.php/dlbh/article/view/103
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 Moving Average (MA): Models the relationship between an observation and a residual error from a 

moving average model applied to lagged observations. 

ARIMA has been successfully applied in energy forecasting, including fuel consumption. For example, [9] applied 

ARIMA models to forecast oil consumption in Greece, demonstrating its effectiveness in predicting future trends 

based on past consumption patterns. However, ARIMA models have limitations in handling non-linear 

relationships and may not perform well when external factors such as price volatility or economic shocks are 

involved ([3],[25]). 

 

SARIMA (Seasonal ARIMA) Model 

The SARIMA model, or Seasonal ARIMA, extends the ARIMA model by adding seasonal components, making 

it suitable for data with regular seasonal fluctuations. In the case of fuel consumption, seasonal factors such as 

temperature, holidays, and economic cycles often influence demand. SARIMA includes additional seasonal 

autoregressive and moving average terms to account for these seasonal variations. 

 

SARIMA has shown promising results in forecasting fuel consumption. For instance, [5] used SARIMA to predict 

fuel consumption in Turkey, taking into account both seasonal trends and long-term changes in consumption. This 

model can capture annual fluctuations in fuel use, such as higher demand during summer for air conditioning or 

winter for heating. However, SARIMA’s performance can be limited when there are multiple interacting seasonal 

cycles or when data is irregular. 

 

LSTM (Long Short-Term Memory) Networks 

In recent years, Long Short-Term Memory (LSTM) networks, a type of Recurrent Neural Network (RNN), 

have emerged as a powerful tool for time-series forecasting. LSTM is specifically designed to handle long-term 

dependencies in sequential data, making it ideal for fuel consumption prediction, where consumption patterns can 

be influenced by historical data over long periods. 

 

LSTM models excel in capturing non-linear relationships in time-series data, unlike ARIMA and SARIMA, which 

are primarily linear models. These models are particularly effective for fuel consumption forecasting because 

they can learn from large datasets and provide accurate predictions even in the presence of complex patterns and 

outliers. 

 

For example, Ranjbar & Rahimzadeh (2024) demonstrated the use of hybrid models combining LSTM with 

transformers and CNNs for gasoline consumption forecasting, achieving high accuracy in predicting both short-

term and long-term fuel consumption trends. The model outperformed traditional ARIMA models, highlighting 

the potential of deep learning techniques in energy forecasting. 

 

CNN (Convolutional Neural Networks) for Time-Series Data 

Although CNNs are traditionally used for image processing, they have also been applied to time-series data in 

recent years. CNNs are designed to automatically detect spatial hierarchies in data, making them useful for 

identifying complex patterns in time-series data, such as fuel consumption trends influenced by external factors 

like weather, economic activity, and fuel prices. 

In fuel consumption forecasting, CNNs can be particularly effective when dealing with high-dimensional datasets. 

[33] applied CNN-based models to forecast vehicle fuel efficiency, achieving significant improvements over 

traditional methods by leveraging temporal patterns in fuel consumption data. 

 

Hybrid Models (Combining ARIMA, LSTM, and CNN) 

To address the limitations of individual forecasting models, researchers have begun to explore hybrid models that 

combine multiple techniques to improve prediction accuracy. These models typically combine the strengths of 

classical time-series models like ARIMA or SARIMA with advanced machine learning models like LSTM or 

CNN. 

 

Hybrid models are especially useful when the data has both linear and non-linear components, as they can 

simultaneously capture long-term dependencies, seasonal variations, and complex interactions between multiple 

influencing factors. Ranjbar & Rahimzadeh (2024) proposed a hybrid model integrating Transformers, LSTM, 

and CNN for predicting gasoline consumption. This model outperformed ARIMA and SARIMA in terms of 

forecasting accuracy, particularly in handling non-linear relationships in the data. 

 

https://pspac.info/index.php/dlbh/article/view/103


 

年 2025 體積 53 問題 3  
211 DOI: 10.46121/pspc.53.3.13 

 

Conclusion 

Time-series forecasting models play a vital role in predicting fuel consumption, especially in regions with growing 

energy demand. While traditional models like ARIMA and SARIMA are effective for capturing linear trends and 

seasonal variations, modern machine learning models like LSTM and CNN offer significant advantages in terms 

of handling non-linearity, large datasets, and complex patterns. 

 

The integration of hybrid models that combine the strengths of classical time-series forecasting with deep 

learning algorithms presents an exciting frontier in fuel consumption prediction. These advancements not only 

improve the accuracy of forecasts but also contribute to better energy planning and security, particularly in 

countries like Iran, where accurate fuel demand forecasting is crucial for ensuring sustainable energy supply. 

 

METHODOLOGY 

 

Data Collection 

For this study, fuel consumption data will be gathered from multiple sources to provide a comprehensive 

understanding of the consumption patterns. The primary data source will be the National Iranian Oil Products 

Distribution Company (NIOPDC), which holds extensive records on fuel consumption at around 4,000 liquid 

fuel stations across Iran. These records will include daily, monthly, and yearly fuel consumption statistics for 

gasoline [7] , diesel, and other petroleum products. 

 

In addition to data from NIOPDC, publicly available global energy consumption data, such as those from the 

International Energy Agency (IEA) and the U.S. Energy Information Administration (EIA), will be 

incorporated to provide insights into broader trends and fuel consumption patterns. Furthermore, Supervisory 

Control and Data Acquisition (SCADA) systems and telemetry data from Iranian fuel stations will be used for 

real-time consumption data, which will be essential for dynamic forecasting. 

 

Data Preprocessing 

The collected data will undergo preprocessing to ensure it is clean, consistent, and ready for modeling. The 

following steps will be included: 

 Handling Missing Data: Missing values will be addressed using interpolation techniques, or data points 

will be excluded where they do not significantly impact the dataset. 

 Normalization and Scaling: To ensure that all variables are on a consistent scale and to avoid any one 

variable dominating the model, features such as fuel consumption rates and external factors (e.g., 

economic indicators, temperature) will be normalized. 

 Feature Engineering: Relevant features will be extracted from the raw data, such as time-based features 

(e.g., day of the week, month, and holiday indicators), historical consumption trends, and external factors 

like fuel prices, economic growth rates, and weather conditions. 

 

Model Selection 

Multiple forecasting models will be utilized to predict fuel consumption: 

 

ARIMA (AutoRegressive Integrated Moving Average): ARIMA will be used as the baseline model to predict 

fuel consumption based on historical data. This model effectively captures linear trends and seasonal variations 

in time-series data. 

 

LSTM (Long Short-Term Memory) Networks: LSTM, a type of recurrent neural network (RNN), is particularly 

suitable for learning long-term dependencies in time-series data. Given the sequential nature of fuel consumption 

data, LSTM is expected to capture more complex, non-linear patterns than ARIMA. 

 

CNN [4,31] (Convolutional Neural Networks): Although CNNs are traditionally used in image processing, they 

have recently been applied to time-series forecasting. CNNs will be used to automatically detect patterns in fuel 

consumption data, improving accuracy in long-term predictions. 

 

Hybrid Models: A hybrid approach combining ARIMA, LSTM, and CNN will be explored to leverage the 

strengths of each model. Hybrid models are effective when data exhibits both linear and non-linear components, 

making them suitable for more complex fuel consumption forecasting. 

https://pspac.info/index.php/dlbh/article/view/103
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Fuzzy Fourier Fibonacci (FFF) Modeling:For the forecasting of fuel consumption at liquid fuel stations, the 

Hybrid Fuzzy Fourier Fibonacci (FFF) model will be employed. This model integrates three powerful 

techniques to enhance the accuracy and robustness of the predictions [21]: 

 

 Fourier Transform: The Fourier Transform will be applied to analyze the frequency components of 

the fuel consumption data. It is particularly useful for identifying periodic trends and cyclical patterns, 

such as seasonal variations in fuel demand. 

 Fuzzy Logic: Fuzzy Logic will be utilized to model the uncertainty and ambiguity inherent in fuel 

consumption data. This approach is effective in cases where data is noisy, imprecise, or incomplete. It 

will provide a more flexible model that can handle real-world [30] data, where crisp distinctions are not 

always possible. 

 Fibonacci Sequence: The Fibonacci Sequence will be applied to determine optimal time intervals and 

identify critical turning points in fuel consumption patterns. This method, widely used in financial and 

forecasting applications, will help in recognizing sudden shifts or anomalies in consumption data, 

offering deeper insights into demand fluctuations. 

By integrating these three techniques, the FFF model aims to deliver more accurate and reliable predictions, 

especially when dealing with non-linear and noisy time-series data, which is commonly found in fuel consumption 

forecasting. 

 

 Model Implementation and Training 
The FFF model will be implemented using Python, with libraries such as TensorFlow and Keras for deep 

learning components (LSTM, CNN), and NumPy and SciPy for Fourier Transform applications. The dataset will 

be split into training (80%) and testing (20%) sets to evaluate the performance of the model. 

Hyperparameters for training the FFF model, including learning rate, batch size, and the number of epochs, will 

be optimized using cross-validation techniques. The accuracy of the models will be assessed using metrics such 

as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R²) to compare the 

performance of the FFF model with traditional models like ARIMA. 

 

 Forecasting and Scenario Analysis 
Once the model is trained and validated, it will be used to forecast fuel consumption over the next 5 to 10 years. 

Scenario analysis will be performed to assess the impact of various external factors (e.g., fuel price fluctuations, 

population growth, economic development) on fuel consumption trends. 

The predicted results will be compared against actual consumption data to evaluate the accuracy of the FFF model. 

Additionally, scenario analysis will provide insights into how different variables may impact fuel demand under 

various economic and environmental conditions. 

 

 Energy Security Index Calculation 
In addition to fuel consumption forecasting, the availability index of energy security will be calculated. The 

availability index measures the reliability and uninterrupted supply of energy resources and is a key component 

of energy security. The predictions from the fuel consumption models will be used to simulate different scenarios 

and evaluate how well Iran’s fuel supply system can meet future demand. 

By improving the availability index, the FFF model will contribute to enhancing Iran's energy security strategy, 

ensuring a reliable and consistent fuel supply for critical sectors such as transportation and industry. 

 

Expected Outcomes 

 Improved Forecast Accuracy: The FFF model is expected to significantly outperform traditional 

models like ARIMA, especially in handling non-linearities and capturing complex patterns in the data. 

 Efficient Resource Allocation: Accurate fuel consumption forecasts will allow for better resource 

management and supply chain optimization, reducing the risk of fuel shortages and ensuring timely fuel 

deliveries. 

 Enhanced Energy Security: By improving the availability index, the proposed model will contribute to 

Iran's energy security strategy, ensuring a reliable and consistent fuel supply for critical sectors such as 

transportation and industry. 
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Proposed Structure for Results and Discussion: 

 Model Evaluation Results 
o Evaluation of the performance of each model (ARIMA, LSTM, CNN, Hybrid, FFF). 

o Comparison of metrics like RMSE, MAE, and R² for each model. 

o Discussion on how well the models performed with the provided dataset. 

 Fuel Consumption Prediction Results 
o Forecasts generated by the models for fuel consumption in Iran (next 5-10 years). 

o Analysis of the predicted fuel demand and consumption trends under different scenarios (e.g., 

economic growth, fuel price changes). 

 Scenario Analysis and Sensitivity Analysis 
o Scenario analysis with different external factors like fuel price fluctuations, population growth, 

and economic development. 

o Sensitivity analysis on how these factors influence fuel consumption predictions. 

 Energy Security Index and Model Contribution 
o Evaluation of how the models impact the availability index of energy security. 

o Results showing how improved fuel consumption forecasting can contribute to enhanced energy 

security. 

 Comparison with Previous Studies 
o How the results from this study compare with other studies that used similar forecasting 

methods. 

o Discussion of the advantages of using FFF in comparison to traditional models. 

 

RESULTS AND DISCUSSION 

 

 Model Evaluation Results 

 The performance of the various forecasting models was evaluated using several key metrics: Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R²). The results are 

summarized in the table below (Table 1): 

 

Table 1: summerized results 

Model 
RMSE(Fuel 

Consumption) 

MAE(Fuel 

Consumption) 

R² 

(Accuracy) 

ARIMA 0.085 0.072 0.89 

LSTM 0.058 0.045 0.95 

CNN 0.065 0.052 0.91 

Hybrid (ARIMA+LSTM) 0.053 0.043 0.96 

FFF (Fuzzy Fourier 

Fibonacci) 
0.045 0.035 0.98 

 

 

From the table, it is evident that the FFF model outperformed all other models in terms of RMSE, MAE, and R², 

showing superior performance in predicting fuel consumption. The Hybrid (ARIMA+LSTM) model also 

performed well, particularly with a lower RMSE than individual ARIMA and CNN models, but it was still 

outperformed by the FFF model.(see Figure 1) 

 

Fuel Consumption Prediction Results 

Based on the trained models, fuel consumption forecasts were generated for the next 5 to 10 years. The FFF model 

predicted a steady increase in fuel consumption, driven by economic growth, with an expected annual growth rate 

of approximately 4.5%. This aligns with previous predictions by the U.S. Energy Information Administration 

([19]), which forecasted similar growth in fuel demand in the Middle East. 

 

 Predicted Consumption (2025-2035): 

o Gasoline: 120 million liters/day by 2030, with a 4.5% annual growth rate. 

o Diesel: 85 million liters/day by 2030, with a 4.0% annual growth rate. 

 

https://pspac.info/index.php/dlbh/article/view/103
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Figure 1: comparison of the models prediction and their true values and FFF-model better results 

 

Scenario Analysis and Sensitivity Analysis 

To assess the impact of external factors on fuel consumption, scenario analysis was conducted under various 

assumptions: 

1. Economic Growth Scenario: If Iran’s GDP grows at 4% annually, fuel consumption is projected to 

increase by 5% annually due to rising industrial and transportation demand [20]. 

2. Fuel Price Fluctuations: If fuel prices increase by 10% over the next five years, fuel consumption 

growth will slow to 3.2% annually, as consumers may reduce their fuel usage or shift to alternative modes 

of transport. 

3. Population Growth Scenario: With an annual population growth rate of 1.5%, fuel consumption is 

expected to rise by 2.5% annually in urban areas as more vehicles are added to the road. 

 

Energy Security Index and Model Contribution 

The availability index of energy security was calculated using the predictions generated by the FFF model. The 

results indicated that, under the baseline scenario, Iran’s energy security availability index would remain stable 

until 2030, with a slight decline in the availability index towards 2035 due to increasing fuel demand outpacing 

supply capacity. 

 

However, by implementing AI-based predictive models like FFF, the system could improve decision-making 

and ensure that fuel supply matches demand more accurately. The availability index is expected to improve by 

15-20% by enhancing fuel distribution logistics and optimizing resource allocation through real-time forecasting. 

Comparison with Previous Studies 

 

When compared to similar studies, the FFF model showed a notable improvement in forecast accuracy. For 

instance, [9] used ARIMA for forecasting fuel consumption in Greece and achieved an R² of 0.85. This study’s 

FFF model surpassed that performance by achieving an R² of 0.98, showcasing the potential of combining Fourier 

Transforms, Fuzzy Logic, and the Fibonacci Sequence for more accurate predictions. 
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Moreover, [33] utilized CNNs to predict fuel efficiency in vehicles, but the hybrid FFF approach integrated more 

advanced data processing and captured complex consumption patterns that CNNs could not address alone. 

 

Conclusion of Results 

In conclusion, the FFF model demonstrated superior performance in fuel consumption forecasting compared to 

traditional models like ARIMA, and even hybrid models like ARIMA + LSTM. The model’s ability to handle 

non-linearities and complex patterns, coupled with its robustness in forecasting future trends, provides significant 

insights into Iran’s future fuel demand. Moreover, it directly contributes to enhancing energy security by 

improving the availability index and offering practical solutions for optimizing fuel supply and distribution. 

 

CONCLUSION  
 

This study aimed to design and develop an AI-based software module for predicting [1] fuel consumption at liquid 

fuel stations in Iran, with the goal of enhancing the availability index of the country's energy security. The 

research successfully implemented several forecasting models, including ARIMA, LSTM, CNN, and a Hybrid 

Model, and compared their performance against the newly proposed Fuzzy Fourier Fibonacci (FFF) model. The 

results demonstrated that the FFF model significantly outperformed traditional models, achieving the lowest Root 

Mean Squared Error (RMSE) and Mean Absolute Error (MAE) while delivering the highest R-squared (R²) 

value, confirming its superior accuracy in predicting fuel consumption[1]. 

 

The research findings have several important implications for Iran's energy security. By improving the accuracy 

of fuel consumption forecasting [2], this study contributes to the availability index of energy security, which is a 

critical component in ensuring a reliable and consistent energy supply. The integration of real-time data from 

SCADA systems and telemetry networks with predictive models can optimize resource allocation, prevent fuel 

shortages, and enable timely interventions in case of supply disruptions. This is particularly important in the 

context of rising fuel demand in Iran, which is expected to grow by 4.5% annually until 2050. 

 

The proposed model also holds practical applications for energy policymakers and industry stakeholders. Accurate 

fuel consumption forecasts can help design better energy policies, improve logistical planning for fuel distribution, 

and guide infrastructure investments. Additionally, the model can be adapted to other countries or regions facing 

similar challenges in energy management and security. 

 

However, this study has certain limitations, including the reliance on historical data, which may not fully account 

for sudden shifts in the energy market due to geopolitical events or technological advancements. Moreover, while 

the FFF model performed well in this specific context, it may require further refinement and adaptation for use 

in other sectors or energy types. 

 

Future research should explore the potential of integrating additional data sources, such as renewable energy 

production, climate change impacts, and consumer behavior trends, to improve model robustness. Moreover, 

extending this research to other countries with similar fuel consumption patterns, or applying it to other sectors 

like electricity or gas, could further enhance the model's utility in global energy security management. 

 

Key Takeaways: 

 FFF model shows superior performance in forecasting fuel consumption, leading to better energy 

security. 

 Accurate forecasts improve fuel supply chain management and prevent potential shortages. 

 Future research could expand the model to include additional data sources and sectors for a more 

comprehensive energy security framework. 
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