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ABSTRACT:

Indoor placement is critical factor in enhancing the performance of wireless networks especially in smart
healthcare environments requiring accurate localization and consistent connectivity. This study proposed a multi-
stage optimization framework using the Particle Swarm Optimization (PSO) algorithm to optimize the placement
of IEEE 802.11 Access Points (APs) based on empirical Path Loss (PL) modelling. Initially Received Signal
Strength Indictor (RSSI) data is collected across four zones in a hospital environment. A zone-specific long
distance PL model is derived by optimizing the PL exponent and the standard deviation using PSO under both
Line of Sight (LoS) and non Line of Sight (NLoS) conditions. Subsequently a second PSO stage determines the
optimal AP location to maximize coverage and minimize interference by maximizing Signal to Interference Ratio
(SIR) using the optimum PL parameters in the previous stage. The accuracy of measurement data was evaluated
by calculating the mean-square error (MSE) between real PL and theoretical PL, as well as the real PL and
optimized PL model. The results demonstrate that the measurement data is accurate and the optimized PL model
can reduce MSE and build a reliable dataset. The minimum MSE is achieved in zone 1 which is equal to 0.28 dB.
On the other hand, the optimum AP locations provide a high coverage area with less interference

Keywords: Received Signal Strength Indictor (RSSI), WiFI, Path Loss(PL), Particle Swarm Optimization (PSO), Signal to
noise ratio (SIR), coverage area, interference, Mean Square Error (MSE).

INTRODUCTION

The proliferation of wireless technologies in smart environments , particularly healthcare facilities , necessitates
robust indoor communication strategies [1, 2]. Traditional wired network are being replaced by WiFi based
architecture for their ease of deployment and maintenance. However optimizing AP placement in complex indoor
setting is challenging due to multipath effects , human movements, and architecture constraints that cause signal
degradation [3].

The 2.4GHz industrial, scientific, and medical (ISM) bands remains apopular choise for indoor WiFi due to its
compatibility and range characteristics. In practice , APs are often deployed arbitrarily, leading to redundant
coverage in some areas and signal voids (blank zones) in others . moreover , interference from overlapping signals
and structural obstacle leads to suboptimal network performance [4][5].

To address these limitations , this study presents a a data-driven , PSO based optimization framework comprising
multistage. the presented approach investigates the behavior of RSSI propagated from the installed WiFi and
calculate the empirical PL at a 2.4 GHz network in four corridor indoor environments. then evaluate the reliability
of the measurement data using MSE between them. The proposed optimum PL models for each environment are
based on the empirical PL by optimizing long-distance PL model parameters, PL exponent (n), and Standard
deviation(c). Using the optimum PL model’s parameters, the APs location is optimized to reduce interference
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and provide a high coverage area. To find the best locations for the APs, the optimization procedure takes into
account a variety of variables, including the length of the corridor, the quantity of APs, and the PL parameters.
This work contributes to the development of effective and dependable wireless communication infrastructures by
combining the advantages of PL modeling and PSO to offer a comprehensive solution for Wi-Fi APs location
optimization in corridor environments. The rest of this paper is organized as follows: in section 2 related work
will be discussed. Some important aspects of indoor communications and optimization will be highlighted in
sections 3 and 4, respectively. The methodology will be illustrates in section 5. The results and evaluation of the
proposed model are presented in section 6. Finally, the conclusion and future work will be set out in section 7.

RELATED WORKS

Previous studies explored various models for indoor PL prediction such as the authors in [6] present an indoor
estimation PL model to improve estimation accuracy in the environment. The authors used a WiFi signal at 2.4
GHz to 2.4835 GHz in an indoor environment considering the multiwall model. They used an Adaptive Neuro-
Fuzzy Inference System (ANFIS) to predict PL as an output. At the same time, the inputs were distance, no. of
walls between AP and RP, frequency, and wall material then compared the results with measurement data. The
Root Mean Square Error (RMSE) between the estimated and measurement data was 2.7302 dB. The authors in
[7] optimize the PL Floating Interception (FI) by simulating an office environment and calculating PL using a ray
tracing algorithm at 39GHz. They work to minimize the error of shadow fading of the FI model to 0.6dB in the
LOS scenario. The authors in [8] evaluate the measured PL in a three corridors environment at 2.4 GHz with the
theoretical PL. They used the linear regression method to predict PL exponent to calculate theoretical PL. They
found that the highest difference between theoretical and measured PL is 8.74 dB. In [9] the PL exponent has been
estimated utilizing deep deterministic policy gradient learning, in an indoor environment. The authors used
collected RSSI in the environments from three Zigbee nodes. They also measure distance empirically and compare
it with three distances calculated from the RSSI equation. And then calculate the error between them that is equal
to 0.43m. Another work in [10] presents an adaptive model (ADAM) to optimize the long-distance PL model
using Bluetooth technology. The introduced model was applied in a real environment that achieved an average
error of 2.93m. The geodesic PL model is proposed to optimize PL parameters in ship and office environments
using DASH-7 sensors at 868 MHz. The authors in [11] optimized five WiFi APs’ signal quality in a floor plan
using a genetic algorithm. The proposed network was able to increase coverage area to 80% and improve signal
quality from -45 to -65 dBm. APs location optimization was highlighted in [12] to enhance coverage area and
service quality in several room environments. The optimized signal quality ranged between -47 and -87dBm. The
authors in [13] used binary PSO (BPSO) to select the best position of three WiFi APs in lab and room
environments to propose APs Distribution Optimization Algorithm Coverage Solution (APD-CS ) Algorithm.
They used ray tracing propagation model to evaluate signal quality at -40dBm, -45dBm -50dBm , -55dBm and -
60dBm. The highest accuracy was achieved at 97.6% at -55dBm.

INDOOR COMMUNICATIONS CHARACTERISTICS

Multipath Phenomena

It represents the phenomena wherein the AP and the receiver communicate multiple copies of the original signal.
When human bodies, objects, obstacles, and barriers are present, multipath propagation occurs, which
significantly affects indoor wireless communication.

Path loss (PL)
Before actual deployment, accurately estimating coverage and carefully adjusting installation site antenna heights
are crucial factors in optimizing network performance. As a result, accurate radio propagation characteristic
modeling is essential for designing and optimizing WiFi networks. The properties of radio propagation have been
extensively researched worldwide. In the context of cellular and wireless sensor networks, numerous field
measurements have been conducted in a range of indoor and outdoor environments. In general, a wide range of
parameters, including distance, frequency band, typical antenna heights, topography, and the presence of
obstructions, buildings, hills, mountains, people, and other features, influence the PLy. However, other elements
like wall thickness and type, floor plans, and building materials must be taken into account for the indoor
environment. Research institutions and standard organizations have produced several PL models, such as
Okumura-Hata, Cost 231-Hata, Bertoni-Walfisch, ITU Advanced, WINNER II, WINNER+, and 3GPP Spatial
Channel Model, Log-normal Okumura-Hata, Stanford University Interim (SUI) developed for IEEE 802.16d
model, and Ericsson model [14]. The Log-normal PL model is commonly used to reflect indoor radio signal
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propagation, but this model does not reflect the obstacle-induced attenuation between the AP and Receiver Points
(RPs) [15]
PL(d)dB=PL(d,)+10nlog(%) +c 1

Where PL(d, ) is average PL at the separation distance d, =1, d is the distance between the transmitter position
and each receiving point, n is PL exponent, and ¢ is standard deviation

Received Signal Strength (RSS)

Regarding the characteristics of multipath propagation, received power (P,), which denotes the diminishing signal
power during the transfer between the transmitter and the receiver, is another crucial quantity that warrants
attention. P, can be computed using the following formula at d distance [16]:

Pr(d)=P,—PL(d) 2
Where P; is power transmission.

PARTICLE SWARM OPTIMIZATION

Eberhart and Kennedy created the PSO algorithm in 1995 as a random optimization technique. This tactic draws
inspiration from social psychology as well as the dynamic behaviors of fish schools, birds, and insects. The PSO
approach stands out as a widely utilized technique for addressing continuous and nonlinear optimization
challenges [17].

Our approach's goal is to select optimum parameters of the long-distance PL model using measurements data to
use it for producing predictions of optimum APs locations that give high coverage area with less interference. The
proposed approach for optimizing PL using a fitness function may be readily applied in an actual case study. In
the optimality research space, every particle in the swarm represents a possible solution. Let Xi(t) represent the
position and Vi ”(t) denote the velocity of the particle Pi at time t, as defined by the equation [17].

K= 00 F W)+ (UL P R+ (c27u2* P ) 3

Rt+1 — F)It + X}+1 4
where x}”is the velocity of next iteration, ){I is the velocity of i iteration, w is the weight that control the effect

of the current velocity on the velocity of the next iteration, Pl is the best position i particle , the Pl is the best

position in the swarm c1 and c2 are used to control the effect of p!

pest

and Pg;best’ and ul and u2 are random

numbers between 0 and 1.

METHODOLOGY

Experimental setup

The study was conducted on the sixth floor of a hospital building, characterized by concrete flooring, brick walls,
glass windows with metal frames, and metal-framed doors. The experimental area comprised four zones,
designated as zone 1, 2, 3, and 4, as depicted in Figure 1. The installed WLAN operated at 2.4 GHz with a
bandwidth of 6 MHz. The separation distance between two RPs is 1 m along zone 1, 2, and 4, with 26, 20, and 22
RPs respectively, positioned at a height of 1 m. These RPs were designed to receive RSSI data from the four APs.
The experimental design ensured that each AP maintained LOS with two zones while experiencing NLOS
conditions with the remaining two, as illustrated in Figure 1. At each RP, RSSI samples were collected using
netspot software installed on an HP laptop with specifications: an Intel Core i7-12650H processor, 16 GB of
RAM at 2.30 GHz, with an NVIDIA GeForce GTX 1050 graphics card, and a 64-bit Windows 10 operating
system. At each RP, 24 samples were collected in four orthogonal directions, capturing signals from the APs in
all four zones. A total of 2,112 samples were aggregated across all zones Figure (1) show the positions of APs in
the installed network the RPs in each zone and the direction of moving the receiver in each zone. The yellow
points represent the APs, blue points are the RPs in Zone 1, purple points are the RPs in Zone 2, orange points are
the RPs in Zone 3, and cyan points are the RPs in Zone 4. Black arrows represent the directions of RPs direction.
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The equipment used in the experiments clarified in Figure (2) including the 4 APs and the RP represented by the
labtop. Table (1) list the configuration of these equipment
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Figure 2:experimental equipment in the experimental site: (a) AP1, (b)AP2, (C)AP3, (d)AP4, (e) RP.

Table 1:experimental set up specifications

Parameter Configuration
Zone 1 (corridor 1) 2*26m

Zone 2 (corridor 2) 2.5*%20m

Zone 3 (corridor 3) 2.5*%22m

Zone 4 (corridor 4) 2.5%20m
Communication protocol 802.11n

No. Channels 6

Channel Bandwidth 20MHz
Frequency 2.4 GHz
Transmitter height 1.5m
Transmitter gain 5dBi
Transmitter and receiver antenna Omni-direction
Transmission power 20dBm

RP height im

Receiver gain 3dBi

Proposed Mode
This study aims to present multi-stage to minimize interference between installed APs in four zones and maximize
the coverage area in these zones passing through three stages including:

1. Initial Stage : this stage is foundation of the proposed framework on comprises the following steps:
a. Setup initial network: The test scenario consists of four WiFi APs deployed in an indoor environment, each
in one outlying zone.
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b. RSSI measurement and Data Collection
The RSSI values are collected from the APs across multiple RPs along each zone. The RPs are spaced according
to the zone lengths to capture a comprehensive dataset for each section.

RSSl;1 RSSl15 RSSl13 RSSll,n] 5
RSSI RSSI RSSI RSSI

RPs = 2,1 2,2 23 2,n

RSSl,, RSSl;, RSSl,; RSSl,,
L

RSS 1 RSS 1 RSS 1 RSS 1 ]
m m m,3 m,n

.1 2
PL Model Optimization Stage

This stage focuses on optimizing the PL model parameters using RSSI data. A long-distance PL model is selected
depending on the RSSI characteristics of the environment. A PL model is provided for each zone utilizing the
measured RSSI values as empirical data for PL. PSO was employ to refine PL parameters (e.g., PL exponent and
Standard deviation) for each zone to create a PL model for each zone. Gaussian distribution and Standard
deviation’ ranges for simple indoor environment are listed in Table 2 [18].

Table 2: PL parameters for indoor environment at 2.4GHz

scenario PL exponent Standard deviation
LoS 1.6-1.8 3-6
NLoS 3-45 6-10

These values are adjusted using the PSO algorithm by minimization of the error, in terms of MSE which is
expressed in equation (6) to create a PL model for each zone. The aim is to reduce the MSE between the empirical
and estimated PL for each RP. This phase produces ideal values for PL parameters that precisely represent the
conditions in each zone.

1 N
MSE = W;(PLW -PL,,

Where PLemp is the empirical PL at each receiver PLes is PL estimated by PSO , and N is number of receiver at
each zone.

: 6

[ Start

Deploy RPs in all zones and Collect RSS| measurements from each |
AP at every RP

Organize RSS1 data for each AP and zone then identify variations in
RSSI values.

+

Iorgar\ize RSSI data for each AP and zone then identify variations in

RSSI values.
Choose the long-distance PL model based on the environment and
frequency (2.4 GHz=).
+
Use the collected RSSI data to compute the empirical PL for each
zone
I.| Set initial PSO parameters (e.g.. swarm size, learning factors, inertia
weight).
+

\.I Use predefined values for n and o from Table (2) for LoS and NLoS I

scenarios

+

| Compute the theoretical PL for each RP using the initial PL
parameters.

+

1. Use Equation (6) to compute MSE baetween empirical and
theoretical PL values.

’ls MSE acceptable?
o L Yes

. Use PSO to iteratively optimize the n and o for LoS and NLoS
scenarios

l.ILJ[)(inH particle positions and velocities using Equations (2) and M).l

+

| Select the best values of n and o for each zone and generate a
novel PL model for each zone using the optimized parameters.

+

End

Figure 3: flowchart of proposed PL model for each zone.
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AP Locations Optimization Stage:

Using the optimized PL model, a second PSO optimization has been implemented to distribute the APs by
reducing interference caused by multiple APs and enhancing the coverage area at each zone. The RSSI and
interference as the basis for its fitness function, aiming to keep RSSI values above the threshold (e.g., -60 dBm)
and ensure minimal overlap and interference among APs. Formally, the optimization problem is given equation

by

fitness _ function(Xi) = (0t * f.oerage + B * fsir) /

X :{APlX,y, AP2,,, AP3, , AP4,

Where . and B are weights to balance between the interference and the coverage functions. In this study, o

8

and 3 are equal 0.5 to balance between the SIR and coverage area. The minus sign is to reverse PSO work and
minimize the cost function. The first part of the fitness function:

N
Y SIR
i=1

fsm: I N

9

Where N is number of receivers at each zone. SIR are calculated at each receiver by:

SIRi = 10

Pr,

k=1k=m
Where M is the maximum signal strength P, in mWatt. Py is the PR at each RP measured in mWatt. The second
part of fitness function is

f _ 11
coverage W
Where
_  1,if...RPS>=RSSlyresnold 12
C — {0 reshol
Where RSSlinreshola Which is -60 in this study.
With some constraint
H H 0, fSIR SSIRthreshold
fitness _ function = {Oyothe,wise 3
SI Rthreshold = 1 5 A . . A
To guarantee not overlapping the APs, in this study we used the constraint:
d _§ oo,if...dppg <min_distance
APs 0 14

Where minimum distance between two APs is 5m.
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Initiale . RSSI threshold (-60 dBm), path loss threshold (80), PSO
parameters: swarm size, iterations, inertia weight (w), cognitive parameter
(c1), social parameter (c2), and randomize initial positions of APs as
particles.
¢ N
Initial Fitness for APs by compute RSSI for each RP using the optimized Path
Loss (PL) model, and calculate coverage and interference using
objective functions:

/

. /SIR and [Coverage- |
v

> PSO Optimization Loop J
’ v

For Each Particle (AP Positions): Update Velocity and Position using
equation (3) and (4), and ensure AP positions are within bounds

i :

Evaluate Fitness for Updated Positions by compute RSSI, PL, and SIR for
each RP using the optimized PL model (Equation (1) for PL and Equation (2)
for RSSI).

v

SIR< SIR threshold

caleulate /5/R and fCoverage using Equation (8) and Equation (11)

Balance
between fSir and fCoverage Equation (7)

v

Update Local_best and global_best based on current fitness values

is sidtance between two APs > min distance?

No
v

‘ QOutput Best AP Positions ‘

o

Figure 4: flowchart of APs positions optimization process .
Combining both flowcharts, here’s an integrated methodology for optimizing the network's PL model parameters
and AP locations in a single flowchart format:
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Initial stage

| Setup the network and adjust its parameters |

Y

| Measure RSSI in the Corridors |
v
Analyze RSSI from Each AP in All Corridors

v
| Select Path Loss Model |

¥

Optimize Path Loss Model Parameters Using PSO

Initialize PSO Parameters
v
Randomly Select Initial PL Parameters from Table 2

v

Estimate Theoretical PL model

v

Calculate MSE Between Empirical and Theoretical PL
models

v

Optimize Standard deviation and Gaussian Values with

v

Output Optimal PL Parameters

Y

Use Optimized Path Loss Parameters to Optimize AP Locations:

initialize PSO Parameters for AP Location Optimization

Estimate optimized PL model
v

Adjust AP positions iteratively to achieve high coverage
and reduce interference.

v

Balance between maximizing RSSI coverage and minimizing interference |

v
| Output Optimal APs locations |

4 2025 #8fE 53 ME 2

Figure 5: flowchart of the proposed work.
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RESULTS AND DISCUSSIONS

The results of the proposed work are divided into two sections, first one includes the results of evaluating the
accuracy of measurement data by comparing it with theoretical data and data resulted by the optimized PL model.
While the second section focus on the results of the optimized network highlighting the improved AP locations to
enhance the coverage and reduce interference between them.

PL model optimization

The PL of the installed network was calculated based on the measured data and compared with the long-distance
PL which was derived using equation (2). The comparison was conducted to evaluate the accuracy of the
measurement data for each zone across the four APs. After applying PSO and creating the optimized PL model
for each zone, the RSSI at each RP was updated to reflect the changes in PL parameters. Figure (6) expounded
the RSSI at each RP in zone 1 from all APs, it can be noted that the AP1 and AP2 covered the zone whereas AP3
and 4 covered some RPs. On the other hand, the optimized RSSI results from the novel PL model for zone 1 the
close to the real RSSI.

AP1 AP2
-30 T T T T T -30
Measurement RSSI
Measurement RSSI Estimated RSSI
Estimated RSS! =3 Optimized RSS!
35 Optimized RSS!
-40
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= S 50
& 45T 2
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% 50
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Figure 6:comparison between RSSI of measurement, optimized model, and theoretical model of the
installed network in zone 1 from: (a) AP1(b) AP2 (c) AP3 (d) AP4.

Also, Figure (7) explain the real, estimated and novel PL of RP in zone 1.
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Figure 7: PL of the installed network in zone 1 from: (a) AP1(b) AP2 (c) AP3 (d) AP4.

The RSSI at each RP in zone2 are demonstrated in Figure (8) . AP2 and AP3 are covered this zone with good
coverage area. In figure (8), the PL of these APs are illustrated.
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Figure 8:comparison between RSSI of measurement, optimized model, and estimated model of the
installed network in zone 2 from: (a) AP1(b) AP2 (c) AP3 (d) AP4.

AP1 AP2
105 - . " : . . 75
= Measurement PL | == Measurement PL
Estimated PL Estimated PL
100 Optimized PL 1 701 Optimized PL
95
65
0]
@ g%r
o o
S 85} 5
3
a & 55
80 -
50
75
7 45
65 - 40
0 2 4 6 8 10 12 14 16 18 20 o 2 4 6 8 10 12 14 1B 18 2
RP RP
(@) (b)
AP3 AP4
70 - . . . . . . . . 95 T . . - :
Measurement PL MeasurementPL
Estimated PL Estimated PL
65 Optimized PL | ] 9 Optimized PL | |
60 - 4
85
~ 55} o
[as)]
A % 80
-l
& o501 &
75
45
70
40
65 !
350 5 Y 5 4 5 B U 4 a5 0 2 4 6 8 10 12 14 16 18 20
RP RP

(© (d)
Figure 9: PL of the installed network in zone 2 from: (a) AP1(b) AP2 (c) AP3 (d) AP4.

The RSSI in zone 3 and the PL are explained in Figure (10) and figure (11) respectively.
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Figure 10:comparison between RSSI of measurement, optimized model, and theoretical model of the
installed network in zone 3 from: (a) AP1(b) AP2 (c) AP3 (d) AP4.
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Figure 11: PL of the installed network in zone 3 from: (a) AP1(b) AP2 (c) AP3 (d) AP4.

Finally, the coverage area of zone 4 in terms of RSSI and PL are illustrates in Figure (12) and figure (13),

respectively.
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Figure 13: PL of the installed network in zone 4 from: (a) AP1(b) AP2 (c) AP3 (d) AP4.

The optimized PL model shows a strong correlation with the empirical RSSI data validating its effectiveness in
capturing realostic signal behavior. The optimized PL model is created by optimizing the parameters of the long
distance PL model for each zone for all APs Using PSO. the optimized PL model represented the novel PL model
for each zone. The fitness function of the proposed model in terms of MSE decreased significantly for all zones
as clarified in Figure (14).
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Figure 14: fitness function of PSO for all zones.
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The optimized parameters which are listed in Table (3) are selected from the range of them in Table (2). In zone
1, AP1, and AP2 are LoS with the RPs while AP3 and AP4 are NLoS with RPs. AP2 and AP3 are LOS with RPs
in zone 2 whereas AP1 and AP4 are NLoS with them. Whereas AP3 and AP4 are LOS with RPs in zone 3 and
AP1, AP2 are NLoS with them. Finally, AP1 and AP4 are LOS with RPs in zone 4, and AP2, and AP3 are NLoS
with them.

Table 3: optimized parameters for optimized PL models for each zone in LoS and NLoS scenarios.

scenario LoS NLoS

PL n c n G

parameters

zonel 1.8 5.54680353828335 3.51026000032416 9.64060822034534
zone2 1.76556084990013 | 6 3.2223 9.91317242147897
zone3 1.8 5.06724408616220 3.52886216348056 6.89233478681771
zone4 1.64545022544877 | 3 3.99921812085644 9.35302164644985

The MSE between real PL and theoretical PL was calculated to evaluate the accuracy of real data whereas the
MSE between real PL and optimized PL model was calculated to compare with MSE between measured PL and
theoretical PL for each AP in all zones as illustrated in Figure (15). It can be noted that the RPs located in the
intersection areas between zones are LoS with the APs in other zones increasing MSE values such as RPs (24, 25,
26) in zone LoS with AP3, RPs (13,14,15) in zone 2 are LoS with AP4, RPs (11,12,13) in zone 3 are LoS with
AP1, and RPs (14,15,16) in zone 4 are Los with AP3. On the other hand, it can be observed that the MSE values
reduced significantly compared to pre-optimization values. This reduction illustrates the accuracy of the optimized
PL model in fitting the real data, improving the predictions for RSSI and PL for the APs location optimization
stage.

MSE ‘ ‘ MSE
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Figure 15: MSE of PL for: (a) zonel (b zon2 (c) zone3 (d) zone4.
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APs locations optimization

The optimized Pl model is utilized to calculate the PL and determine the optimal locations for all APs. This
guarantees that each RP receives a strong RSSI signal from at less from one AP. The fitness function of the
proposed model strikes a balance between maximizing coverage area and minimizing interference by maximizing
SIR, as demonstrated in Figure (16). The best fitness function reached the best value of -78.5483 at iteration
697484. The SIR at zonel, zone 2, zone3 and zone4 equal 1.00334, 1.02551, 1.05186, and 1.03846, respectively
which are less than the SIR threshold which means that the interreference between the APs across each zone is

minimum.
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Figure 16: fitness function of the APs locations optimization stage.

APs locations in the optimized network are determined by PSO at all zones which is shown in Figure (17). The
APs distributed in locations at a height of 2m above the ground on the floor. These locations covered a wider area
and made each RP receive high RSSI with less interference between APs.
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Figure 17: optimized Network.
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The RSSI and PL of the optimum network at each RP in all zones are show in Figures (18) and (19) respectively.

At zone 1, RPs (1-5) primarily receive the RSSI from the AP4 then RPs (6-17) covered by AP1, while the
remaining RPs signals receive from both AP4 and AP2. In Zone 2, AP2 provides full coverage for the entire zone.
RPs from (1-7) receive RSSI from AP3, RPs (8 -17) are covered by AP4, and RPs(18-22) receive RSSI from AP3
at zone 3. The last zone, zone 4, AP4 propagates to all RPs in the zone.
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Figure 18: Optimized RSSI Distribution Across Receivers
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The heatmap for all zones optimization illustrates the RSSI distribution after and before optimization cross each
RP with red to cyan gradient in Figure (20) and Figure (211t demonstrates how RSSI values fluctuate with the red
parts showing stronger signals and the cyan area showing lower signals.. For the visualization, it is evident that
all RPs cross each zone and receive RSSI values above the predefined RSSI threshold. The comparison
between RSSI distribution in the installed network and the optimized network demonstrates that all PRs at all
zones get good RSS.
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Figure 20: : heatmap of RSSI for installed network in : (a) zone 1, (b) zone 2, (c) zone 3, (d) zone 4.
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Figure 21: heatmap of RSSI for optimized network in : (a) zone 1, (b) zone 2, (c) zone 3, (d) zone 4.

The histogram of RSSI for both installed and optimized networks as shown in figures (22) and (23), illustrate the
RSSI range across all RPs:
- zone 1:in installed network the range of RSSI, ranged between -45 dBm to -65 dBm while in optimized
network, it improved to a range of -35 dBm to -60 dBm.
- zone 2: the RSSI for the installed network varied between -40 dBm to -65 dBm, while for the optimized
network, it ranged from -30 dBm to -60 dBm.
- zone 3: the installed network exhibited an RSSI range -40 dBm to -65 dBm whereas the optimized
network showed an improved range of -35 dBm to -55 dBm.
- zone 4:incontrast to other zones, the installed network had an RSSI range of -30 dBm to -60 dBm while
optimized network showed a range of -30 dBm to -50 dBm.
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Figure 22: histogram of RSSI for installed network in : (a) zone 1, (b) zone 2, (c) zone 3, (d) zone 4.
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Figure 23: histogram of RSSI for optimized network in : (a) zone 1, (b) zone 2, (c) zone 3, (d) zone 4.
The SIR at RPs in all zones are illustrated in figure (24), its clearly show that not only PSO enhanced coverage

across all zones but also reduce coverage gaps and interference in dead zones. Additionally, Enhancement at
zone 4 is the highest among the rest zones.
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The proposed multi-stage optimization framework for Wi-Fi APs demonstrates significant improvements in
indoor wireless network performance compared to installed network. Through addressing the issue of signal
coverage, interference, and PL issues in intricate indoor environments, this investigation offers an effective
strategy for AP placement optimization in smart healthcare applications and other contexts. The combination of
PL model optimization, empirical data collecting, and PSO-assisted AP placement optimization demonstrates how
well the strategy works to provide great coverage and low interference. The results obtained demonstrate that the
optimized PL model improves prediction accuracy for signal propagation by considerably lowering MSE between
empirical and theoretical PL values. By guaranteeing that all RPs get strong signal strength over the predetermined
threshold (-60 dBm) while minimizing interference, the optimal AP location further improves network
performance. The suggested approach effectively strikes a compromise between coverage and interference
reduction, as demonstrated by SIR values for each zone. The SIR is optimized from 0.5488 dB, 1.2816 dB , 0.8207
dB ,and 0.2529 dB to 41.2536 dB, 17.4920 dB, 10.6807 dB and 13.8691 dB, for zonel, zone2, zone3 and zone4,
respectively. According to SIR results the optimized network is successful interference mitigation. Moreover,
from Figure (3), its clear that SIR is much higher after optimization x(75.17, 20.96,191.19, and 87.28) times for
zonel,2,3,and 4, respectively ,than before optimization pointing to PSO performance to mitigate the weak spots
across the zones.

The significance of taking into account both LoS and NLoS situations in interior spaces is also emphasized in the
study. The PSO-derived optimized PL parameters for each zone give a more accurate representation of signal
propagation in the actual environment, which is essential for creating dependable wireless networks. Visual
representations of the RSSI distribution's heatmaps and histograms before and after optimization show how well
the suggested technique works to increase signal strength and coverage. The study has limitations to a particular
indoor environment (a hospital building) with regulated configuration, notwithstanding its beneficial results. Due
to variations in construction materials, layout, and sources of interference, the suggested solution may not function
as well in other situations, such as offices, retail centres, or industrial settings. Furthermore, the study is based on
static conditions, which could not accurately represent the dynamic nature of situations in reality where signal
propagation might be impacted by human movement and other variables.

CONCLUSION AND FUTURE WORK

This study presents a novel indoor placement model based multistage process. The proposed model uses PSO to
novel a PL model for four zones and use this model to optimize a WiFi placement model considering LoS and
NLoS scenarios. In PL parameters optimization stage, MSE have been calculated between measurement PL and
theoretical PL to evaluate the reliability of measurement data. The RSME optimized by select the best PL
parameters which is achieved 0.28dB, 0.23 dB, 0.53 dB, 0.2dB at zone 1 zone 2, zone 3, and zone 4, respectively.
At APs location stage, the optimum distribution of AP reduced the interference and covered all RPs across zones
with -60dBm. The SIR of the optimized network illustrates that the distribution of APs results low interference
between them. The effectiveness of optimized process makes the optimized network more suitable for applications
requiring precise indoor positioning and robust connectivity for future work.
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