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INTRODUCTION 

 

The proliferation of wireless technologies in smart environments , particularly healthcare facilities , necessitates 

robust indoor communication strategies [1, 2]. Traditional wired network are being replaced by WiFi based 

architecture for their ease of deployment and maintenance. However optimizing AP placement in complex indoor 

setting is challenging due to multipath effects , human movements, and architecture constraints that cause signal 

degradation [3]. 

 

The 2.4GHz industrial, scientific, and medical (ISM) bands remains apopular choise for indoor WiFi due to its 

compatibility and range characteristics. In practice , APs are often deployed arbitrarily, leading to redundant 

coverage in some areas and signal voids (blank zones) in others . moreover , interference from overlapping signals 

and structural obstacle leads to suboptimal network performance [4][5]. 

To address these limitations , this study presents a a data-driven , PSO based optimization framework comprising 

multistage. the presented approach investigates the behavior of RSSI propagated from the installed WiFi and 

calculate the empirical PL at a 2.4 GHz network in four corridor indoor environments. then evaluate the reliability 

of the measurement data using MSE between them. The proposed optimum PL models for each environment are 

based on the empirical PL by optimizing long-distance PL model parameters, PL exponent (n), and Standard 

deviation(σ). Using the optimum PL model’s parameters, the APs location is optimized to reduce interference 

ABSTRACT: 

Indoor placement is critical factor in enhancing the performance of wireless networks especially in smart 

healthcare environments requiring accurate localization and consistent connectivity. This study proposed a multi- 

stage optimization framework using the Particle Swarm Optimization (PSO) algorithm to optimize the placement 

of IEEE 802.11 Access Points (APs) based on empirical Path Loss (PL) modelling. Initially Received Signal 

Strength Indictor (RSSI) data is collected across four zones in a hospital environment. A zone-specific long 

distance PL model is derived by optimizing the PL exponent and the standard deviation using PSO under both 

Line of Sight (LoS) and non Line of Sight (NLoS) conditions. Subsequently a second PSO stage determines the 

optimal AP location to maximize coverage and minimize interference by maximizing Signal to Interference Ratio 

(SIR) using the optimum PL parameters in the previous stage. The accuracy of measurement data was evaluated 

by calculating the mean-square error (MSE) between real PL and theoretical PL, as well as the real PL and 

optimized PL model. The results demonstrate that the measurement data is accurate and the optimized PL model 

can reduce MSE and build a reliable dataset. The minimum MSE is achieved in zone 1 which is equal to 0.28 dB. 

On the other hand, the optimum AP locations provide a high coverage area with less interference 

Keywords: Received Signal Strength Indictor (RSSI), WiFI, Path Loss(PL), Particle Swarm Optimization (PSO), Signal to 

noise ratio (SIR), coverage area , interference, Mean Square Error (MSE). 
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and provide a high coverage area. To find the best locations for the APs, the optimization procedure takes into 

account a variety of variables, including the length of the corridor, the quantity of APs, and the PL parameters. 

This work contributes to the development of effective and dependable wireless communication infrastructures by 

combining the advantages of PL modeling and PSO to offer a comprehensive solution for Wi-Fi APs location 

optimization in corridor environments. The rest of this paper is organized as follows: in section 2 related work 

will be discussed. Some important aspects of indoor communications and optimization will be highlighted in 

sections 3 and 4, respectively. The methodology will be illustrates in section 5. The results and evaluation of the 

proposed model are presented in section 6. Finally, the conclusion and future work will be set out in section 7. 

 

RELATED WORKS 

Previous studies explored various models for indoor PL prediction such as the authors in [6] present an indoor 

estimation PL model to improve estimation accuracy in the environment. The authors used a WiFi signal at 2.4 

GHz to 2.4835 GHz in an indoor environment considering the multiwall model. They used an Adaptive Neuro- 

Fuzzy Inference System (ANFIS) to predict PL as an output. At the same time, the inputs were distance, no. of 

walls between AP and RP, frequency, and wall material then compared the results with measurement data. The 

Root Mean Square Error (RMSE) between the estimated and measurement data was 2.7302 dB. The authors in 

[7] optimize the PL Floating Interception (FI) by simulating an office environment and calculating PL using a ray 

tracing algorithm at 39GHz. They work to minimize the error of shadow fading of the FI model to 0.6dB in the 

LOS scenario. The authors in [8] evaluate the measured PL in a three corridors environment at 2.4 GHz with the 

theoretical PL. They used the linear regression method to predict PL exponent to calculate theoretical PL. They 

found that the highest difference between theoretical and measured PL is 8.74 dB. In [9] the PL exponent has been 

estimated utilizing deep deterministic policy gradient learning, in an indoor environment. The authors used 

collected RSSI in the environments from three Zigbee nodes. They also measure distance empirically and compare 

it with three distances calculated from the RSSI equation. And then calculate the error between them that is equal 

to 0.43m. Another work in [10] presents an adaptive model (ADAM) to optimize the long-distance PL model 

using Bluetooth technology. The introduced model was applied in a real environment that achieved an average 

error of 2.93m. The geodesic PL model is proposed to optimize PL parameters in ship and office environments 

using DASH-7 sensors at 868 MHz. The authors in [11] optimized five WiFi APs’ signal quality in a floor plan 

using a genetic algorithm. The proposed network was able to increase coverage area to 80% and improve signal 

quality from -45 to -65 dBm. APs location optimization was highlighted in [12] to enhance coverage area and 

service quality in several room environments. The optimized signal quality ranged between -47 and -87dBm. The 

authors in [13] used binary PSO (BPSO) to select the best position of three WiFi APs in lab and room 

environments to propose APs Distribution Optimization Algorithm Coverage Solution (APD-CS ) Algorithm. 

They used ray tracing propagation model to evaluate signal quality at -40dBm, -45dBm -50dBm , -55dBm and - 

60dBm. The highest accuracy was achieved at 97.6% at -55dBm. 

 

INDOOR COMMUNICATIONS CHARACTERISTICS 

Multipath Phenomena 

It represents the phenomena wherein the AP and the receiver communicate multiple copies of the original signal. 

When human bodies, objects, obstacles, and barriers are present, multipath propagation occurs, which 

significantly affects indoor wireless communication. 

 

Path loss (PL) 

Before actual deployment, accurately estimating coverage and carefully adjusting installation site antenna heights 

are crucial factors in optimizing network performance. As a result, accurate radio propagation characteristic 

modeling is essential for designing and optimizing WiFi networks. The properties of radio propagation have been 

extensively researched worldwide. In the context of cellular and wireless sensor networks, numerous field 

measurements have been conducted in a range of indoor and outdoor environments. In general, a wide range of 

parameters, including distance, frequency band, typical antenna heights, topography, and the presence of 

obstructions, buildings, hills, mountains, people, and other features, influence the PLy. However, other elements 

like wall thickness and type, floor plans, and building materials must be taken into account for the indoor 

environment. Research institutions and standard organizations have produced several PL models, such as 

Okumura-Hata, Cost 231-Hata, Bertoni-Walfisch, ITU Advanced, WINNER II, WINNER+, and 3GPP Spatial 

Channel Model, Log-normal Okumura-Hata, Stanford University Interim (SUI) developed for IEEE 802.16d 

model, and Ericsson model [14]. The Log-normal PL model is commonly used to reflect indoor radio signal 
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propagation, but this model does not reflect the obstacle-induced attenuation between the AP and Receiver Points 

(RPs) [15] 
PL(d )dB  PL(d0 ) 10n log( d )  

d0 

1 

Where PL(d0 ) is average PL at the separation distance d0 =1, d is the distance between the transmitter position 

and each receiving point, n is PL exponent, and   is standard deviation 

Received Signal Strength (RSS) 

Regarding the characteristics of multipath propagation, received power (Pr), which denotes the diminishing signal 

power during the transfer between the transmitter and the receiver, is another crucial quantity that warrants 

attention. Pr can be computed using the following formula at d distance [16]: 

Pr(d )  Pt  PL(d ) 2 

Where Pt is power transmission. 

PARTICLE SWARM OPTIMIZATION 

Eberhart and Kennedy created the PSO algorithm in 1995 as a random optimization technique. This tactic draws 

inspiration from social psychology as well as the dynamic behaviors of fish schools, birds, and insects. The PSO 

approach stands out as a widely utilized technique for addressing continuous and nonlinear optimization 

challenges [17]. 

Our approach's goal is to select optimum parameters of the long-distance PL model using measurements data to 

use it for producing predictions of optimum APs locations that give high coverage area with less interference. The 

proposed approach for optimizing PL using a fitness function may be readily applied in an actual case study. In 

the optimality research space, every particle in the swarm represents a possible solution. Let   ( ) represent the 

position and     ( ) denote the velocity of the particle    at time t, as defined by the equation [17]. 

where x
t 1 

is the velocity of next iteration,  
t
 is the velocity of i iteration, w is the weight that control the effect 

of the current velocity on the velocity of the next iteration, Pt is the best position i particle , the t 

gbest 
is the best 

position in the swarm c1 and c2 are used to control the effect of 

numbers between 0 and 1. 

METHODOLOGY 

t 

pbest 
and t 

gbest 
, and u1 and u2 are random 

Experimental setup 

The study was conducted on the sixth floor of a hospital building, characterized by concrete flooring, brick walls, 

glass windows with metal frames, and metal-framed doors. The experimental area comprised four zones, 

designated as zone 1, 2, 3, and 4, as depicted in Figure 1. The installed WLAN operated at 2.4 GHz with a 

bandwidth of 6 MHz. The separation distance between two RPs is 1 m along zone 1, 2, and 4, with 26, 20, and 22 

RPs respectively, positioned at a height of 1 m. These RPs were designed to receive RSSI data from the four APs. 

The experimental design ensured that each AP maintained LOS with two zones while experiencing NLOS 

conditions with the remaining two, as illustrated in Figure 1. At each RP, RSSI samples were collected using 

netspot software installed on an HP laptop with specifications: an Intel Core i7-12650H processor, 16 GB of 

RAM at 2.30 GHz, with an NVIDIA GeForce GTX 1050 graphics card, and a 64-bit Windows 10 operating 

system. At each RP, 24 samples were collected in four orthogonal directions, capturing signals from the APs in 

all four zones. A total of 2,112 samples were aggregated across all zones Figure (1) show the positions of APs in 

the installed network the RPs in each zone and the direction of moving the receiver in each zone. The yellow 

points represent the APs, blue points are the RPs in Zone 1, purple points are the RPs in Zone 2, orange points are 

the RPs in Zone 3, and cyan points are the RPs in Zone 4. Black arrows represent the directions of RPs direction. 

P 
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x
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t
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The equipment used in the experiments clarified in Figure (2) including the 4 APs and the RP represented by the 

labtop. Table (1) list the configuration of these equipment 

 

Figure 1:floor layout and Measurement setup. 

 

 

 

 

 

 

 

 

Figure 2:experimental equipment in the experimental site: (a) AP1, (b)AP2, (c)AP3, (d)AP4, (e) RP. 

Table 1:experimental set up specifications 
 

Parameter Configuration 

Zone 1 (corridor 1) 2*26m 

Zone 2 (corridor 2) 2.5*20m 

Zone 3 (corridor 3) 2.5*22m 

Zone 4 (corridor 4) 2.5*20m 

Communication protocol 802.11n 

No. Channels 6 

Channel Bandwidth 20MHz 

Frequency 2.4 GHz 

Transmitter height 1.5m 

Transmitter gain 5dBi 

Transmitter and receiver antenna Omni-direction 

Transmission power 20dBm 

RP height 1m 

Receiver gain 3dBi 

 

Proposed Mode 

This study aims to present multi-stage to minimize interference between installed APs in four zones and maximize 

the coverage area in these zones passing through three stages including: 

 

1. Initial Stage : this stage is foundation of the proposed framework on comprises the following steps: 

a. Setup initial network: The test scenario consists of four WiFi APs deployed in an indoor environment, each 

in one outlying zone. 

     
(a) (b) (c) (d) (e) 
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b. RSSI measurement and Data Collection 

The RSSI values are collected from the APs across multiple RPs along each zone. The RPs are spaced according 

to the zone lengths to capture a comprehensive dataset for each section. 

 

 
 RSSI1,1 RSSI1,2 RSSI1,3 RSSI1,n 
 

RSSI RSSI RSSI RSSI 


RPs   
2,1 2,2 2,3 2,n 

 RSSI3,1 RSSI3,2 RSSI3,3 RSSI3,n 



RSS I RSS I RSS I RSS I 



 m,1 m,2 m,3 m,n 

5 

 

PL Model Optimization Stage 

This stage focuses on optimizing the PL model parameters using RSSI data. A long-distance PL model is selected 

depending on the RSSI characteristics of the environment. A PL model is provided for each zone utilizing the 

measured RSSI values as empirical data for PL. PSO was employ to refine PL parameters (e.g., PL exponent and 

Standard deviation) for each zone to create a PL model for each zone. Gaussian distribution and Standard 

deviation’ ranges for simple indoor environment are listed in Table 2 [18]. 

 

Table 2: PL parameters for indoor environment at 2.4GHz 

scenario PL exponent Standard deviation 

LoS 1.6-1.8 3-6 

NLoS 3-4.5 6-10 

These values are adjusted using the PSO algorithm by minimization of the error, in terms of MSE which is 

expressed in equation (6) to create a PL model for each zone. The aim is to reduce the MSE between the empirical 

and estimated PL for each RP. This phase produces ideal values for PL parameters that precisely represent the 

conditions in each zone. 

1 N 2 

MSE  PLemp  PLest 
N i1 

6 

Where PLemp is the empirical PL at each receiver PLest is PL estimated by PSO , and N is number of receiver at 

each zone. 

Figure 3: flowchart of proposed PL model for each zone. 
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AP Locations Optimization Stage: 

Using the optimized PL model, a second PSO optimization has been implemented to distribute the APs by 

reducing interference caused by multiple APs and enhancing the coverage area at each zone. The RSSI and 

interference as the basis for its fitness function, aiming to keep RSSI values above the threshold (e.g., -60 dBm) 

and ensure minimal overlap and interference among APs. Formally, the optimization problem is given equation 

by 

fitness _ function( Xi)  ( * fcoverage   * fSIR ) 
7 

Xi AP1x, y , AP2x, y , AP3x, y , AP4x, y 
8 

Where  and  are weights to balance between the interference and the coverage functions. In this study,  

and  are equal 0.5 to balance between the SIR and coverage area. The minus sign is to reverse PSO work and 

minimize the cost function. The first part of the fitness function: 
N 

 SIRi 

f
SIR 

  i1  

N 

9 

Where N is number of receivers at each zone. SIR are calculated at each receiver by: 

SIR  
M 

i K 

 Prk 
k 1,k m 

10 

Where M is the maximum signal strength Pr in mWatt. Prk is the PR at each RP measured in mWatt. The second 

part of fitness function is 

f  
C 

cov erage 
N 

Where 

11 

C  1,if ...RPsRSSIthreshold 

0 

12 

Where RSSIthreshold which is -60 in this study. 

With some constraint 

fitness _ 
, fSIR SIRthreshold 

0,otherwise 13 

SIRthreshold  1 .5 
To guarantee not overlapping the APs, in this study we used the constraint: 

d
APs  ,if dAPs min_ dis tan ce 

14 

Where minimum distance between two APs is 5m. 
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Figure 4: flowchart of APs positions optimization process . 

Combining both flowcharts, here’s an integrated methodology for optimizing the network's PL model parameters 

and AP locations in a single flowchart format: 
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Figure 5: flowchart of the proposed work. 

Estimate optimized PL model 

Adjust AP positions iteratively to achieve high coverage 

and reduce interference. 

Balance between maximizing RSSI coverage and minimizing interference 

Output Optimal APs locations 

Use Optimized Path Loss Parameters to Optimize AP Locations: 

 

 

End 

initialize PSO Parameters for AP Location Optimization 

Initialize PSO Parameters 

Randomly Select Initial PL Parameters from Table 2 

Estimate Theoretical PL model 

Calculate MSE Between Empirical and Theoretical PL 

models 

Optimize Standard deviation and Gaussian Values with 

Output Optimal PL Parameters 

Optimize Path Loss Model Parameters Using PSO 

Setup the network and adjust its parameters 

Start 

Initial stage 

Select Path Loss Model 

Analyze RSSI from Each AP in All Corridors 

Measure RSSI in the Corridors 
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RESULTS AND DISCUSSIONS 

The results of the proposed work are divided into two sections, first one includes the results of evaluating the 

accuracy of measurement data by comparing it with theoretical data and data resulted by the optimized PL model. 

While the second section focus on the results of the optimized network highlighting the improved AP locations to 

enhance the coverage and reduce interference between them. 

 

PL model optimization 

The PL of the installed network was calculated based on the measured data and compared with the long-distance 

PL which was derived using equation (2). The comparison was conducted to evaluate the accuracy of the 

measurement data for each zone across the four APs. After applying PSO and creating the optimized PL model 

for each zone, the RSSI at each RP was updated to reflect the changes in PL parameters. Figure (6) expounded 

the RSSI at each RP in zone 1 from all APs, it can be noted that the AP1 and AP2 covered the zone whereas AP3 

and 4 covered some RPs. On the other hand, the optimized RSSI results from the novel PL model for zone 1 the 

close to the real RSSI. 
 

 

 

 

(a) (b) 
 

 

 

 
(c) (d) 

Figure 6:comparison between RSSI of measurement, optimized model, and theoretical model of the 

installed network in zone 1 from: (a) AP1(b) AP2 (c) AP3 (d) AP4. 

Also, Figure (7) explain the real, estimated and novel PL of RP in zone 1. 
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(a) (b) 
 

 

 

 

(c) (d) 

Figure 7: PL of the installed network in zone 1 from: (a) AP1(b) AP2 (c) AP3 (d) AP4. 

The RSSI at each RP in zone2 are demonstrated in Figure (8) . AP2 and AP3 are covered this zone with good 

coverage area. In figure (8), the PL of these APs are illustrated. 
 

 

 

 
(a) (b) 
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(c) (d) 

Figure 8:comparison between RSSI of measurement, optimized model, and estimated model of the 

installed network in zone 2 from: (a) AP1(b) AP2 (c) AP3 (d) AP4. 

 
 

 

 

 

(a) (b) 
 

 

 

 

(c) (d) 

Figure 9: PL of the installed network in zone 2 from: (a) AP1(b) AP2 (c) AP3 (d) AP4. 

The RSSI in zone 3 and the PL are explained in Figure (10) and figure (11) respectively. 
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(a) (b) 

 

 

 

 

(c) (d) 

Figure 10:comparison between RSSI of measurement, optimized model, and theoretical model of the 

installed network in zone 3 from: (a) AP1(b) AP2 (c) AP3 (d) AP4. 

 
 

 

 

 

(a) (b) 
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(c) (d) 

 

Figure 11: PL of the installed network in zone 3 from: (a) AP1(b) AP2 (c) AP3 (d) AP4. 

Finally, the coverage area of zone 4 in terms of RSSI and PL are illustrates in Figure (12) and figure (13), 

respectively. 
 

 

 

 
(a) (b) 

 

 

 

 
(c) (d) 

Figure 12:comparison between RSSI of measurement, optimized model, and theoretical model of the 

installed network in zone 4 from: (a) AP1(b) AP2 (c) AP3 (d) AP4. 
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(a) (b) 

 

 

 

 

(c) (d) 

Figure 13: PL of the installed network in zone 4 from: (a) AP1(b) AP2 (c) AP3 (d) AP4. 

The optimized PL model shows a strong correlation with the empirical RSSI data validating its effectiveness in 

capturing realostic signal behavior. The optimized PL model is created by optimizing the parameters of the long 

distance PL model for each zone for all APs Using PSO. the optimized PL model represented the novel PL model 

for each zone. The fitness function of the proposed model in terms of MSE decreased significantly for all zones 

as clarified in Figure (14). 
 

Figure 14: fitness function of PSO for all zones. 
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The optimized parameters which are listed in Table (3) are selected from the range of them in Table (2). In zone 

1, AP1, and AP2 are LoS with the RPs while AP3 and AP4 are NLoS with RPs. AP2 and AP3 are LOS with RPs 

in zone 2 whereas AP1 and AP4 are NLoS with them. Whereas AP3 and AP4 are LOS with RPs in zone 3 and 

AP1, AP2 are NLoS with them. Finally, AP1 and AP4 are LOS with RPs in zone 4, and AP2, and AP3 are NLoS 

with them. 

 

Table 3: optimized parameters for optimized PL models for each zone in LoS and NLoS scenarios. 

scenario LoS NLoS 

PL 
parameters 

n σ n σ 

zone1 1.8 5.54680353828335 3.51026000032416 9.64060822034534 

zone2 1.76556084990013 6 3.2223 9.91317242147897 

zone3 1.8 5.06724408616220 3.52886216348056 6.89233478681771 

zone4 1.64545022544877 3 3.99921812085644 9.35302164644985 

The MSE between real PL and theoretical PL was calculated to evaluate the accuracy of real data whereas the 

MSE between real PL and optimized PL model was calculated to compare with MSE between measured PL and 

theoretical PL for each AP in all zones as illustrated in Figure (15). It can be noted that the RPs located in the 

intersection areas between zones are LoS with the APs in other zones increasing MSE values such as RPs (24, 25, 

26) in zone LoS with AP3, RPs (13,14,15) in zone 2 are LoS with AP4, RPs (11,12,13) in zone 3 are LoS with 

AP1, and RPs (14,15,16) in zone 4 are Los with AP3. On the other hand, it can be observed that the MSE values 

reduced significantly compared to pre-optimization values. This reduction illustrates the accuracy of the optimized 

PL model in fitting the real data, improving the predictions for RSSI and PL for the APs location optimization 

stage. 
 

 

 

 

(a) (b) 
 

 

 

 

(c) (d) 

Figure 15: MSE of PL for: (a) zone1 (b zon2 (c) zone3 (d) zone4. 
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APs locations optimization 

The optimized Pl model is utilized to calculate the PL and determine the optimal locations for all APs. This 

guarantees that each RP receives a strong RSSI signal from at less from one AP. The fitness function of the 

proposed model strikes a balance between maximizing coverage area and minimizing interference by maximizing 

SIR, as demonstrated in Figure (16). The best fitness function reached the best value of -78.5483 at iteration 

697484. The SIR at zone1, zone 2, zone3 and zone4 equal 1.00334, 1.02551, 1.05186, and 1.03846, respectively 

which are less than the SIR threshold which means that the interreference between the APs across each zone is 

minimum. 
 

Figure 16: fitness function of the APs locations optimization stage. 

APs locations in the optimized network are determined by PSO at all zones which is shown in Figure (17). The 

APs distributed in locations at a height of 2m above the ground on the floor. These locations covered a wider area 

and made each RP receive high RSSI with less interference between APs. 

Figure 17: optimized Network. 
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The RSSI and PL of the optimum network at each RP in all zones are show in Figures (18) and (19) respectively. 

At zone 1, RPs (1-5) primarily receive the RSSI from the AP4 then RPs (6-17) covered by AP1, while the 

remaining RPs signals receive from both AP4 and AP2. In Zone 2, AP2 provides full coverage for the entire zone. 

RPs from (1-7) receive RSSI from AP3, RPs (8 -17) are covered by AP4, and RPs(18-22) receive RSSI from AP3 

at zone 3. The last zone, zone 4, AP4 propagates to all RPs in the zone. 
 

 

 

 

(a) (b) 

 

 

 

 

(c) (d) 

 

Figure 18: Optimized RSSI Distribution Across Receivers in: (a) zone1 (b) zone2 (c) zone3 (d) zone4 

 

 

 

 

(a) (b) 
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(c) (d) 

Figure 19: PL of optimized Network 

The heatmap for all zones optimization illustrates the RSSI distribution after and before optimization cross each 

RP with red to cyan gradient in Figure (20) and Figure (21It demonstrates how RSSI values fluctuate with the red 

parts showing stronger signals and the cyan area showing lower signals.. For the visualization, it is evident that 

all RPs cross each zone and receive RSSI values above the predefined RSSI threshold. The comparison 

between RSSI distribution in the installed network and the optimized network demonstrates that all PRs at all 

zones get good RSS. 
 

 

 

 

(a) (b) 
 

 

 

 

(c) (d) 

Figure 20: : heatmap of RSSI for installed network in : (a) zone 1, (b) zone 2, (c) zone 3, (d) zone 4. 



 

 

 
 

 

 

 
(a) (b) 

 

 

 

 

(c) (d) 

Figure 21: heatmap of RSSI for optimized network in : (a) zone 1, (b) zone 2, (c) zone 3, (d) zone 4. 

The histogram of RSSI for both installed and optimized networks as shown in figures (22) and (23), illustrate the 

RSSI range across all RPs: 

- zone 1: in installed network the range of RSSI, ranged between -45 dBm to -65 dBm while in optimized 

network, it improved to a range of -35 dBm to -60 dBm. 

- zone 2: the RSSI for the installed network varied between -40 dBm to -65 dBm, while for the optimized 

network, it ranged from -30 dBm to -60 dBm. 

- zone 3: the installed network exhibited an RSSI range -40 dBm to -65 dBm whereas the optimized 

network showed an improved range of -35 dBm to -55 dBm. 

- zone 4: in contrast to other zones, the installed network had an RSSI range of -30 dBm to -60 dBm while 

optimized network showed a range of -30 dBm to -50 dBm. 
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(c) (d) 

Figure 22: histogram of RSSI for installed network in : (a) zone 1, (b) zone 2, (c) zone 3, (d) zone 4. 

 
 

 

 

 

(a) (b) 
 

 

 

 
(c) (d) 

Figure 23: histogram of RSSI for optimized network in : (a) zone 1, (b) zone 2, (c) zone 3, (d) zone 4. 

The SIR at RPs in all zones are illustrated in figure (24), its clearly show that not only PSO enhanced coverage 

across all zones but also reduce coverage gaps and interference in dead zones. Additionally, Enhancement at 

zone 4 is the highest among the rest zones. 
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Figure 24: SIR before and after applied PSO for all zones. 

The proposed multi-stage optimization framework for Wi-Fi APs demonstrates significant improvements in 

indoor wireless network performance compared to installed network. Through addressing the issue of signal 

coverage, interference, and PL issues in intricate indoor environments, this investigation offers an effective 

strategy for AP placement optimization in smart healthcare applications and other contexts. The combination of 

PL model optimization, empirical data collecting, and PSO-assisted AP placement optimization demonstrates how 

well the strategy works to provide great coverage and low interference. The results obtained demonstrate that the 

optimized PL model improves prediction accuracy for signal propagation by considerably lowering MSE between 

empirical and theoretical PL values. By guaranteeing that all RPs get strong signal strength over the predetermined 

threshold (-60 dBm) while minimizing interference, the optimal AP location further improves network 

performance. The suggested approach effectively strikes a compromise between coverage and interference 

reduction, as demonstrated by SIR values for each zone. The SIR is optimized from 0.5488 dB, 1.2816 dB , 0.8207 

dB ,and 0.2529 dB to 41.2536 dB, 17.4920 dB, 10.6807 dB and 13.8691 dB, for zone1, zone2, zone3 and zone4, 

respectively. According to SIR results the optimized network is successful interference mitigation. Moreover, 

from Figure (3), its clear that SIR is much higher after optimization ×(75.17, 20.96,191.19, and 87.28) times for 

zone1,2,3,and 4, respectively ,than before optimization pointing to PSO performance to mitigate the weak spots 

across the zones. 

 

The significance of taking into account both LoS and NLoS situations in interior spaces is also emphasized in the 

study. The PSO-derived optimized PL parameters for each zone give a more accurate representation of signal 

propagation in the actual environment, which is essential for creating dependable wireless networks. Visual 

representations of the RSSI distribution's heatmaps and histograms before and after optimization show how well 

the suggested technique works to increase signal strength and coverage. The study has limitations to a particular 

indoor environment (a hospital building) with regulated configuration, notwithstanding its beneficial results. Due 

to variations in construction materials, layout, and sources of interference, the suggested solution may not function 

as well in other situations, such as offices, retail centres, or industrial settings. Furthermore, the study is based on 

static conditions, which could not accurately represent the dynamic nature of situations in reality where signal 

propagation might be impacted by human movement and other variables. 

 

CONCLUSION AND FUTURE WORK 

This study presents a novel indoor placement model based multistage process. The proposed model uses PSO to 

novel a PL model for four zones and use this model to optimize a WiFi placement model considering LoS and 

NLoS scenarios. In PL parameters optimization stage, MSE have been calculated between measurement PL and 

theoretical PL to evaluate the reliability of measurement data. The RSME optimized by select the best PL 

parameters which is achieved 0.28dB, 0.23 dB, 0.53 dB, 0.2dB at zone 1 zone 2, zone 3, and zone 4, respectively. 

At APs location stage, the optimum distribution of AP reduced the interference and covered all RPs across zones 

with -60dBm. The SIR of the optimized network illustrates that the distribution of APs results low interference 

between them. The effectiveness of optimized process makes the optimized network more suitable for applications 

requiring precise indoor positioning and robust connectivity for future work. 

SI
R

 (
 d

B
) 



年 2025 體積 53 問題 2 DOI: 10.46121/pspc.53.2.26 318 

 

 

 

REFERENCES: 

1. Bakar, K.B.A., et al., A review on the immediate advancement of the Internet of Things in 

wireless telecommunications. IEEE Access, 2023. 11: p. 21020-21048. 

2. Raman, R., et al. Enhancing Wi-Fi Signal Performance via Strategic Access Point Placement 

using Genetic Algorithm Approach. in 2024 Second International Conference on Data Science 

and Information System (ICDSIS). 2024. IEEE. 

3. Yang, Y., et al., Positioning using wireless networks: Applications, recent progress and future 

challenges. arXiv preprint arXiv:2403.11417, 2024. 

4. Steenkiste, P., Introduction to Wireless Networking and Its Impact on Applications. 2023: 

Springer. 

5. Mahmud, S.A., et al., Co-existence of Heterogeneous Wireless Networks in 2.4 GHz and 5 GHz 

Spectrum. 2024, Idaho National Laboratory (INL), Idaho Falls, ID (United States). 

6. Shwan, A., Indoor Multi-Different-Wall Path Loss Prediction Model Using Adaptive Neuro- 

Fuzzy Inference System. Jordan journal of electrical engineering, 2024. 11(1): p. 1-1. 

7. Wang, Z., et al. Analysis and Optimization of FI Path Loss Model in 39GHz Indoor Line-of-Sight 

Scenario Based on MMSE. in 2024 International Conference on Microwave and Millimeter 

Wave Technology (ICMMT). 2024. IEEE. 

8. Tun, P.T.Z., Path loss prediction by using RSSI values. Int J All Res Writ, 2018. 1(7): p. 1-6. 

9. Grabowsky, D.P., J.M. Conrad, and A.F. Browne. Limited log-distance path loss model path loss 

exponent estimation using deep deterministic policy gradient. in SoutheastCon 2021. 2021. 

IEEE. 

10. Assayag, Y., et al., Adaptive path loss model for ble indoor positioning system. IEEE Internet 

of Things Journal, 2023. 10(14): p. 12898-12907. 

11. Lubis, N.D. and N.L. Marpaung, Optimizing WiFi Signal Quality Through Access Point 

Placement Using Genetic Algorithm Method. Indonesian Journal of Artificial Intelligence and 

Data Mining. 6(2): p. 262-269. 

12. Alathari, B., et al. An Optimization for Access Point Placement in Indoor Communication. in 

International Conference on Computational Science and Technology. 2022. Springer. 

13. Akram, M.R., et al. Proposed APs Distribution Optimization Algorithm: Indoor Coverage 

Solution. in Journal of Physics: Conference Series. 2021. IOP Publishing. 

14. Erunkulu, O.O., et al., Cellular communications coverage prediction techniques: A survey and 

comparison. IEEE Access, 2020. 8: p. 113052-113077. 

15. Kurt, S. and B. Tavli, Path-Loss Modeling for Wireless Sensor Networks: A review of models 

and comparative evaluations. IEEE Antennas and Propagation Magazine, 2017. 59(1): p. 18- 

37. 

16. Gulia, R., Path loss model for 2.4 GHz indoor wireless networks with application to drones. 

2020: Rochester Institute of Technology. 

17. Freitas, D., L.G. Lopes, and F. Morgado-Dias, Particle swarm optimisation: a historical review 

up to the current developments. Entropy, 2020. 22(3): p. 362. 

18. Rappaport, T.S., K. Blankenship, and H. Xu, Propagation and radio system design issues in 

mobile radio systems for the glomo project. Virginia Polytechnic Institute and State University, 

1997. 


