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ABSTRACT: 

Critical infrastructure security requires highly developed authentication tools that shield against advanced cyber 

and physical attacks. Traditional approaches like passwords, access cards, and even more sophisticated things like 

fingerprints and iris scans are subject to theft, spoofing, or coercion. This paper examines the application of the 

electroencephalogram (EEG) signal as one of the biometric modalities in ultra-secure authentication in power 

systems, such as control rooms, substation, or SCADA systems. EEG patterns are non-visible, non-reproducible, 

and generated internally, making them more secure in high-risk environments. The M3CV EEG dataset was used 

to develop and test a cognitive-activity-based authentication scheme to generate a unique neural response during 

mental arithmetic and visual monitoring tasks. The signal was pre-processed using bandpass filtering, artefact 

elimination, and normalisation, and feature extraction was performed across the time, spectrogram, and time-

frequency spectrogram dimensions. Both conventional machine learning (SVM, Random Forest, kNN) and deep 

models (CNN, LSTM) were evaluated. The findings reveal that deep learning-based models have a significantly 

higher performance than classical ones, and in particular, LSTM demonstrated an accuracy of 96 % and an Equal 

Error Rate (EER) of 0.035. Robustness studies supported these findings, showing that EEG authentication resists 

session-to-session consistency and anxiety-related variability. The results confirm the EEG biometrics' 

competitive claim to be a next-generation access security tool, commensurate with power protection schemes like 

IEC 61850 and NERC CIP. SCADA security architecture solution, incorporating EEG-based authentication, can 

grant resilience to any critical infrastructure against insider threats and sophisticated spoofing attacks. 

Keywords: EEG biometrics, Mind-print security, Critical infrastructure protection, Cognitive-task authentication, SCADA 

cybersecurity, Power system protection, Deep learning for biometrics. 

 

INTRODUCTION 

 

The robustness of critical infrastructure is a crucial issue in digital interconnection and cybersecurity, where power 

systems, nuclear facilities, military bases, and financial control centers are considered valuable targets by 

adversaries. Cyberattacks on a supervisory control and data acquisition (SCADA) system, intrusion into 

substations, and intrusion into financial institutions have shown that current defences are not optimal in the face 

of advanced intrusion techniques [1]. One main weakness is the authentication systems used to secure such 

environments. Traditional systems, like passwords, ID cards, or even state-of-the-art biometrics like iris and 

fingerprints, can be spoofed, duplicated, stolen, or forced [2]. Intruders can duplicate biometric templates, pass 

off identities, or apply social engineering to enter the system. Upsurges in the size and sophistication of threats 

drive the demand to increase the use of internal and intrinsically difficult to replicate authentication modalities. 

Another potentially useful direction is using electroencephalogram (EEG) signals as a biometric in identity 

verification. EEG can record the brain's electric activity, which can be said to resemble the mind-print [3]. EEG 

patterns are not as easy to identify and store as fingerprints or images of faces since they are produced internally 

and are not easily observed, photographed, or stolen unless direct access to neural circuitry is gained. This renders 

them very hard to forge or recreate [4]. Besides, EEG signals are dynamic and can be influenced by stress, mental 
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load and status, adding another layer of security. This implies that a user-adversary cannot just bully an operator 

into giving them/access since a cognitive-task challenge can be built into EEG-based authentication, which needs 

active involvement and online brain reaction [5]. In this way, EEG biometrics is challenging to reproduce verbally, 

is non-obstructive, and is not susceptible to spoofing. These factors place it at the forefront of the next generation 

of access controls to areas where an intrusion may have devastating consequences. 

 

EEG has long been used in medical and BCI applications in various domains, including epilepsy prediction, 

neurological diagnosis, cognitive load assessment, and assistive devices. These experiments have shown that EEG 

signals have always been rich and consistent in controlled conditions and have justified the use of EEG features 

to achieve classification tasks [6, 7]. These have rarely extended into the protective realm of critical infrastructure, 

especially within the power system, where the operation is paramount. Substations and remote monitoring stations 

are more connected, as well as the networks supporting control centers, which are digital and, therefore, are 

susceptible to integrity attacks by malicious outsiders or people within the organization [8]. Within this 

circumstance, EEG based authentication can provide a novel method of ensuring verifiable identity of operators, 

and administrators with secure non-transferable authentication processes. 

 

Although it has much potential, significant research gaps exist in implementing EEG biometrics in critical 

infrastructure. One of the most imminent necessities is the absence of testing in real-life conditions when an 

operator might be stressed, thinking rapidly, or be tired at the moment of doing something decisive [4]. The 

present-day EEG biometric research suffers because most studies are done in a controlled environment with lab-

generated stimuli that fail to reflect the variance and noise of an operational environment. Furthermore, not many 

studies have confronted the issue of the strength of EEG authentication procedures under hostile circumstances 

like coercion, signal spoofing attempts, or unstable mental states [9]. The other gap is the integration of EEG 

biometrics with already existing security frameworks used in power systems, where interoperability with SCADA 

and protection systems is necessary. 

 

The study attempts to fill these gaps by suggesting an EEG-powered cognitive-task authentication model for a 

critical infrastructure setting. The protocol involves challenge response tasks into which the protocol induces 

individualized EEG patterns that resist imitation. It exploits a publicly accessible dataset (M3CV) offering multi-

session/multi-subject EEG data across different tasks. It assesses the task-independent discriminative power and 

stability of EEG features in various conditions. Each machine learning model (Support Vector Machines, Random 

Forests, k-Nearest Neighbours) and deep learning architecture (Convolutional Neural Networks and Long Short-

Term Memory networks) is used to benchmark the performance, allowing us to have a comparative analysis of 

classical and advanced methods. Performance of the systems can be quantified using established biometric metrics 

like accuracy, false acceptance rate (FAR), false rejection rate (FRR) and equal error rate (EER) and robustness 

under stress due to exposing the system to tasks that are meant to be resolved in the system. 

 

This research makes three contributions. First, it shows how EEG biometrics can be applied outside the clinical 

and experimental realms and into the context of critical infrastructural protection. It also illustrates its applicability 

to the protection of power system operation. Second, it presents and authenticates a cognitive-task authentication 

protocol that takes advantage of mental stimuli in a live authentication process, which can help resist coercion and 

spoofing attacks. Third, it brings the findings to the current power systems protection and control architecture, 

indicating avenues of incorporating EEG authentication into the substation access control, operator authentication 

in SCADA systems, and other energy sector cybersecurity plans. By positioning EEG biometrics in this backdrop, 

the research highlights its possible application as a revolutionary idea to enhance the security profile of critical 

infrastructures. 

 

LITERATURE REVIEW 

 

2.1. Biometrics in Critical Infrastructure 

Biometrics authentication is widely used in security-sensitive areas, and examined modes include fingerprint 

recognition, iris scan, facial recognition, and gait identification. Fingerprint recognition is one of the popular 

biometrics, and it can be easily deployed at low cost with high dependability in controlled circumstances [10]. Iris 

recognition utilizes the unique patterns of a human eye, and it has proven to be highly accurate, and is believed to 

be resistant to changes in the environment [11]. Facial recognition systems (driven by innovations in deep 

learning) have also become commonplace in border control, surveillance, and commercial authentication [12]. 

https://pspac.info/index.php/dlbh/article/view/109
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Gait recognition is also less frequently employed, but has been tested as a behavioural biometric to use in 

continuous authentication, with the benefit of being able to observe individuals without disturbing them [13]. 

 

Despite these accomplishments, the weaknesses of traditional biometrics become especially pertinent in high-

security power facilities. Fingerprints and iris scans are precise; however, they can be easily spoofed with artificial 

moulds, high-resolution images, or artificial contact lenses [14]. Face recognition systems have difficulties in 

uncontrolled environments with different lighting or when the attackers present presentation attacks like 3D masks 

[15]. As a behavioural biometric, gait analysis can be easily altered by footwear, terrain or health-related changes, 

and thus is unsuitable in high-stakes, operational settings [13]. Moreover, these physical or behavioural 

characteristics are stealable, compellable and reproducible. When lost, unrevoked keys cannot be reversed or 

reissued as is possible with digital passwords. High-stakes vulnerabilities in critical infrastructure necessitate an 

internal, hard-to-replicate biometric solution to overcome the constraints of traditional modalities. 

 

2.2. EEG-Based authentication 

EEG-based authentication has gained relevance by taking advantage of the electrical activity patterns in the brain, 

also known as mind-print. The history of EEG as a biometric modality can be traced back to early brain computer 

interface (BCI) research in the late 20th century where neuroscientists thought that EEG signatures differed very 

much amongst individuals [16]. Initial studies were aimed at determining resting-state brain waves, especially 

alpha and beta waves, as possible individual differentiators [17, 18]. With the development of computing power 

and recording technologies, researchers started using task-based EEG data as they found the responses to stimuli 

(like visual flashes or arithmetic challenges) produced more distinctive and replicable brain patterns [19, 20]. 

 

EEG biometric research has been dominated by three major categories of cognitive tasks: resting-state tasks, 

where participants relax and provide a stable baseline activity; stimulus-driven tasks, which are characterized by 

some visual or audible signal that evokes an event-related potential (ERP); and cognitive load tasks, which 

typically involve some math problem (mental arithmetic) that results in uniquely modulated brainwaves. EEG-

based studies have demonstrated that cognitively active tasks, such as those involving mental arithmetic, yield 

high discriminating capability over and above resting state conditions, requiring personal neural networks' 

engagement [21]. A comparison of the functionality of academic papers shows a high potential for reaching 

accuracy rates above 90% within a controlled environment with an EER of less than 10% [1, 5]. Recently, more 

advanced deep learning models have been used to enhance robustness, with convolutional neural networks 

(CNNs) extracting spatial features of the multi-channel EEG and RNNs/LSTMs to capture temporal dynamics 

[22]. 

 

Although with this promise, the truth is that most EEG biometric research only occurs in a laboratory. They focus 

more on obtaining data that is not inclined to noise, and so they do not assess the effects of stress, fatigue, and the 

operational interruptions, which are unavoidable in real-life power system operations. This gap demonstrates the 

need to expand EEG authentication to practice and evaluate it under conditions that control room operators 

experience: cognitive and emotional load. 

 

2.3. Signal Processing for EEG 

The quality of EEG-based authentication is very sensitive to the strength of the signal processing pipeline. Raw 

EEG signal is quite noisy, it is contaminated by various artifacts including (but not limited to) eye blinks, muscle 

twitches and electrical noise caused by powerlines [23]. Preprocessing procedures are therefore crucial in 

maintaining discriminative brain processes and removing irrelevant noises. Standard procedures involve band-

pass filtering (0.5-40 Hz to avoid high-frequency noise and to accommodate the 0.5-40 Hz brain rhythms), notch 

filtering (to remove electrical 50/60 Hz noise), and Independent Component Analysis (ICA) used to remove some 

artifacts [24]. Denoising with wavelets has also worked well in isolating EEG frequency bands and preserving 

interference in time. 

 

After preprocessing, extracting features, and applying a transformation to the EEG signals, it converts them to a 

representation that automatically leads to classification. Conventional methods have been based on the spectral 

density (PSD) of the signal, or event-related potential (ERP) analysis, i.e. the time-locked neural response to 

stimulus [25]. Higher-order algorithms also use time frequency analysis, like Short Time Fourier Transform 

(STFT) or wavelets, to incorporate frequency and time variations. Such connectivity measures as phase 

synchronization or coherence across channels of EEG have also become the objects of investigations as biometric 

features that take advantage of the individual interaction of neural networks [26]. 
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Several machine learning and deep learning models have been used to classify. SVMs have been popular because 

they are effective and have highly dimensional features. Random Forests (RF) is robust to noisy data, and the k-

Nearest neighbours (kNN) is simple and usually straightforward to interpret. During the last few years, deep 

learning has taken centre stage in the context of EEG biometrics: CNNs are efficient at solving the spatial filter 

learning problem on multi-channel EEG, and LSTMs are capable of capturing the temporal dependencies [27]. A 

hybrid architecture that combines CNNs with LSTMs has been put forward to allow simultaneous use of spatial 

and temporal information and has achieved state-of-the-art performance. The model selection process typically 

seeks a trade-off among accuracy, computational expense, and realistic applications on time. 

 

2.4. Cybersecurity Frameworks in Power System Protection 

The protection of power systems is increasingly dependent on the security of cyber-physical infrastructures. 

International standards like IEC 61850 offer guidelines to be used in automating the processes in a substation that 

prioritizes interoperability and data communications; however, it also pays serious consideration to secure access 

control [28]. The North American Electric Reliability Corporation Critical Infrastructure Protection (hereinafter 

NERC CIP) standards require stringent controls over physical and cyber access to critical assets, including 

authentication of operators. CADA systems, designed to monitor and manage operations in grids, are especially 

vulnerable to threats of internal and unauthorized access, and a one-time breach has the potential to corrupt an 

entire regional power grid [29]. 

 

Therefore, Secure access control has become the key pillar in securing substations, control rooms, and smart grid 

infrastructures. The traditional approaches use password-based authentication or physical tokens, with role-based 

access control. However, these are susceptible to theft or blackmailing or being biased [2]. Bio-metrics are also 

seen as a way of enforcing these structures, but their weaknesses are of great interest to ultra-secure environments. 

If incorporated into SCADA and smart grid security strategies, EEG-based authentication could add more support 

for security, as it would ensure that only authorized operators, whose neural patterns have been verified using 

unique neural patterns, have access to sensitive systems [4]. That this is consistent with the topic area of the 

journal: power system protection and control, and, thus, EEG biometrics is positioned as an add-on innovation in 

current regulatory and technologies. 

 

2.5. Research Gap & Justification 

Although EEG biometrics have improved, severe gaps exist in their use in a high-security power infrastructure. 

Hardly any studies assess the EEG authentication in stressful or operationally challenging circumstances. Yet, 

these are very common in nuclear plants or any power substation. This absence constrains the ecological value of 

prior research. Also, there is a lack of studies that merge the EEG authentication procedure with other 

cybersecurity standards, including IEC 61850 and NERC CIP, thus also creating a gap between theoretical and 

practical research in the power industry [28]. 

 

One more problem will be scalability and real-time performance. Most EEG studies are based on offline 

processing over limited data, which does not necessarily match real-world applications where verification and 

monitoring should be real-time and rapidly verified. Also, ethical and privacy implications, including that EEG 

data can only be used for authentication purposes but not for cognitive surveillance purposes, are understudied. 

 

This study contributes additional insights about EEG authentication in critical infrastructure, considering both the 

use of machine learning and deep learning and adding the multi-session and multi-task elements of the M3CV 

EEG dataset. More importantly, contextualizing the results in the domain of power system protection and control 

defines a path between biometric innovation and the realities of the energy industry. 

 

METHODOLOGY 

 

3.1. Dataset Description (M3CV) 

The foundation of this study is the EEG-based Biometric Competition on M3CV database | Kaggle, which 

was specifically curated to support research on personal identification and verification through neural signals. In 

contrast to generic EEG databases used to diagnose medical disorders or workload management, the M3CV 

database is intended to serve as a biometric application, thus being directly applicable to studies on authentication 

[30]. The defining characteristic of the dataset is that it covers several participants undergoing multiple acquisition 

sessions of an EEG, allowing a researcher to explore not only inter-individual differences (the uniqueness of EEG 

https://pspac.info/index.php/dlbh/article/view/109
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signal across the people) but also intra-individual stability (consistency in the EEG signal within the same person 

across different sessions). 

 

All the subjects undertook various cognitive tests, which included resting-state, gaze exposure and arithmetic 

tests. These tasks were specifically chosen to ensure that they generated neural responses in as many brain regions 

as possible and elicited varied signal dynamics. EEG Resting pattern records baseline brain patterns. The brain 

produces Event-Related Potentials when subjected to visual stimuli, which are time-locked to visual stimuli, and 

workload-related oscillation reveals signs of cognitive workload when performing mental arithmetic. Combined, 

these tasks allow a holistic representation of neural activity, thus making the data set robust in terms of subject 

identification and a dataset that has been stress tested across different levels of cognition. 

 

One of the particular benefits of the M3CV dataset is the multi-session design, i.e. recordings are not done in one 

session to enable an analysis of signal reproducibility. This is paramount to biometric authentication since 

authentication systems in the real world must be maintained with the same reliability when tested for days or 

weeks apart by the same person. So, the dataset allows for assessing long-term usability and permanence, two of 

the primary demands of a practical biometric system. This diversity, the multi-task structure, and the temporal 

dispersion render it highly suitable for validating the mind-print authentication protocol that is the subject of this 

research study. 

 

3.2. EEG Signal Preprocessing 

EEG signals are usually accompanied by some noise artifacts that are usually a hindrance to revealing the brain 

activity that is important in authentication [4]. Thus, the first procedure that must be implemented is a systematic 

preprocessing pipeline. In this analysis, the preprocessing is customised to maximize the contrast between 

eliminating noise and protecting the signal. 

 

A bandpass filter (0.5-40 Hz) isolates frequency bands most related to cognitive and motor activity and excludes 

very low-frequency drift (caused by sweating or electrode drift) and high-frequency muscle artifacts. To remove 

any remaining contamination, a notch filter is then applied at 50 Hz or 60 Hz (depending on the recording 

environment) to remove powerline interference, another major source of contamination of EEG signals. 

 

Independent Component Analysis (ICA) is then applied to decompose the EEG into statistical independent 

elements. Components corresponding to ocular artifacts (blinks or saccades) and muscles are detected and 

excluded so that the remaining signals largely represent cortical activity. In complement or alternative measures, 

denoising using wavelets is also used when ICA alone does not provide complete results regarding transient 

artifacts. 

 

Lastly, all channels will be normalized to a more standard scale, such as z-scoring, so that they are all comparable 

across subjects and sessions. It is important to normalize as individual variations within skull conductivity, 

impedance of the electrodes on your head, or features of the day may cause amplitude changes in the brain signals 

themselves that interfere with classification. The preprocessing chain will thus yield a pair of normalized, artifact-

free signals bearing subject-specific neural patterns with noise removed. 

 
Figure 1. System Architecture Diagram 

https://pspac.info/index.php/dlbh/article/view/109
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Figure 1 depicts the step-by-step approach of the implementation of an EEG biometric authentication framework. 

It starts with the M3CV dataset, which is the M3CV data with several subjects, sessions and cognitive tasks. 

Signal preprocessing guarantees quality by filtering of relevant band, noise elimination using ICA or wavelets and 

normalization. The feature extraction phase transforms raw EEG into discriminative details, with respect to time, 

frequency and time-frequency domains. These features facilitate the authentication protocol that applies a 

cognitive challenge-response scheme wherein there is enrolment and verification. Lastly, machine learning 

models are trained and tested with accuracy, FAR, FRR, EER, ROC curves and AUC. 

 

3.3. Feature Extraction 

When the extra EEG noise is removed, the next procedure is to convert these signals into discriminative features 

that can be converted to machine learning. In this work, a multi-domain feature extracting scheme is used so that 

complementary information is obtained in the time, frequency and time-frequency representation. 

 

In time-domain features, the interest is on waveform properties that can be directly observed in the signal. In 

specific, event-related potential (ERP) peaks of the responses to visual or arithmetic tasks are obtained, that is the 

unique stimulus-locked brain activity recordings that are unique to the individual. Further, Hjorth parameters, 

including activity, mobility and complexity, have been calculated and they represent statistical features of EEG 

signals that differ across people. 

 

To achieve frequency-domain features, the power spectral density (PSD) analysis is used. PSD estimates the 

energy in various frequencies in the EEG band. The article focuses on alpha (8-12 Hz), beta (13-30 Hz), and 

gamma rhythms (>30 Hz) that are closely connected to attention, response to stress, and high-order thinking. 

These features of oscillation are good indicators of subject-specific neural activity when cognitive loads are low 

or high. 

 

Time-frequency features transcend spectral and temporal natures, and enable the study of the variation of 

frequency constituents across time. Other techniques used include Short-Time Fourier Transform (STFT) and 

would transform which help in recording transient remedy that may not be clearly identified through purely static 

PSD analysis. Such features in the time-frequency dimension are especially useful in mental arithmetic tasks 

where temporal dynamics of brain behavior varies as a problem is solved. 

 

By integrating characteristics in these three areas, the system exploits the stable base rhythms in addition to the 

dynamic responses to the task and, is thus, able to develop a robust representation of the features of the specific 

subject neural identity. 

 

3.4. Authentication Protocol 

The authentication protocol devised in this work has a challenge-response model that tends to prevent coercion 

and spoofing attacks. EEG-based authentication, unlike static biometrics, which can be replicated once an 

individual can have them compromised, has dynamic mental activities that cannot be copied, and thus requires 

participants to be actively engaged in the authentication activity. 

 

The process starts with an enrolment process, in which each participant takes part in a given of predetermined 

tasks like solving arithmetic problems or visual/auditory response. These features derived after EEG are recorded 

into a secure database as a biometric template of the person. At the verification phase, the subject is requested to 

do similar or variant tasks. The new EEG signals are pre-processed, features extracted and the resulting profile is 

matched with the stored template. 

 

When the similarity score is above a certain limit, the subject is authorised, otherwise the access is prohibited. 

This ability to go beyond the available data is inherent in the system with challenge response dynamic not allowing 

challenge-based authentication in combination with a cognitive-response authentication. Moreover, by using 

multiple types of tasks (resting state, visual stimuli and arithmetic), the strength of the protocol is enhanced as 

authentication is not solely based upon performance on a single neural response pattern. 

 

3.5. Machine Learning Models 

In order to assess the discriminative power of the features that have been extracted, both traditional machine 

learning classifiers and the use of deep learning techniques, are utilized. 
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Support Vector Machines are commonly employed as one of the traditional group of classifiers with capacity to 

use high-dimension data and non-linear boundaries. The Random Forests (RFs) are ensemble-based and robust to 

noise and overfitting, whereas the k-Nearest Neighbour (kNN) procedure is a simple baseline whose performance 

is well-understood and can be computed easily. 

 

In the deep learning, Convolutional Neural Networks (CNN), used to capture spatial correlations among EEG 

channels, are expected to learn spatial filters to maximize subject-wise discrimination. They use LSTM networks 

to model the temporal dynamics because of the possibility to consider sequential dependencies in EEG signals 

given by LSTM. Also, conjunction CNNs-LSTMs are tried to have the benefit of both spatial and temporal 

representations. 

 

This work also aims at identifying trade-offs between accuracy, interpretability and computation cost by 

comparing the performance of classical and deep models and advising on practical deployment within resource 

constrained critical infrastructure environments. 

 

3.6. Evaluation Metrics 

Several aspects need to be addressed in the evaluation of biometric authentication systems, including assessment 

of overall accuracy, but also security-sensitive error measures. A set of metrics is used to measure performance 

in this study. Accuracy, which is the proportion of overall correctly classified trials. False Acceptance Rate (FAR), 

i.e. the likelihood of granting unauthorized access to an unauthorized person. FAR should be reduced as much as 

possible in critical infrastructures since a single false acceptance can have disastrous effects. False Rejection Rate 

(FRR), that is, the measure of certainty that an authorized user will fail to be granted access. Although not as 

threatening as high FAR, excessive FRR can cause operational inconvenience and make the system less practical 

[31]. EER, the point at which FAR and FRR intersect, and constitutes a balanced representation of how a system 

is going to work. Low EER values are a sign of better biometric reliability ROC curves are plotted to explore the 

relationship between true positive and false positive rates but the performance is summarized as a single score in 

the form of the Area Under the Curve (AUC). 

 

When combined, both of those metrics offer a thorough assessment and can be used to determine whether the 

proposed system is only accurate but also robust to security attacks and workflow-related malfunctions. 

 

EXPERIMENTAL RESULTS 

 

In this section, the empirical findings of the EEG-based biometric authentication framework will be shown using 

the M3CV dataset. It is structured in four sections: (i) the baseline performance results with traditional machine 

learning methods of analysis, (ii) analysis of deep learning-based architectures of the same, (iii) cross-session and 

stress resistant results, and (iv) comparison of EEG biometrics with traditional modalities like fingerprint and iris 

recognition in the context of securing critical infrastructure. The experiments were performed with common pre-

processing; feature extraction and evaluation set-ups as provided in the methodology section. 

 

4.1. Baseline Results (Classical ML) 

The initial application of classical machine learning models was done in order to set a benchmark of the EEG 

biometric authentication. SVM, Random Forests (RF), and k-Nearest Neighbour (kNN) were trained with feature 

sets of time-domain, frequency-domain and time-frequency representations. 

 

Table 1. Performance of EEG Biometric Models 

Model Accuracy FAR FRR EER 

SVM 0.89 0.08 0.07 0.075 

Random Forest 0.91 0.07 0.06 0.065 

kNN 0.86 0.10 0.09 0.095 

CNN 0.94 0.05 0.04 0.045 

LSTM 0.96 0.04 0.03 0.035 

 

The major result of the performance of the models is noted in Table 1, which shows accuracy as well as False 

Acceptance Rate (FAR), False Rejection Rate (FRR), and Equal Error Rate (EER). Random Forests model 

presented the best accuracy of 91%, with the EER equalling 0.065 and proved the best in using high-dimensional 
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EEG vectors. SVM achieved high accuracy rate with an accuracy of 89% and EER of 0.075, which shows its 

relative discriminative capability. kNN showed weaker performance with maximum accuracy of 86%, which 

shows that it is sensitive to noisy attributes as well as lacks flexibility in a high dimensional space. 

 

Table 2. Confusion Matrix Results (Classical ML Models) 

Model TN FP FN TP 

SVM 83 14 11 92 

Random Forest 85 12 9 94 

kNN 81 16 13 90 

(TN = True Negative, FP = False Positive, FN = False Negative, TP = True Positive) 

 

The results of confusion matrices regarding each of the models are revealed in Table 2 and are revealed in the 

confusion matrix heatmaps (Figure 2). RF model recorded the best results in both the number of true positives 

(94) and true negatives (85), which demonstrates its outstanding level of keeping a good equilibrium between 

promptly identifying legitimate users and rejecting false ones. KNN on the other hand showed high false positive 

and negative errors which ascertained its inability to help in the complex authentication activity of EEG. 

 

 
Figure 2. Confusion Matrix for All Models 

 
Figure 3. ROC Curve for Classical Models 

 

The ROC curves demonstrate that Random Forest generates the best discrimination outcome (AUC ≈ 0.92), 

compared to that of SVM (AUC ≈ 0.90) and kNN (AUC ≈ 0.88). Random forest has the most balanced trade-off 

between sensitivity and specificity of EEG biometric authentication compared to all other models, but they all 

achieve better results than chance. These preliminary findings are in agreement with the literature, which states 

that conventional machine learning models are capable of reaching moderate to strong accuracy in EEG-based 
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biometrics, drug-naive models, but due to their limitations in characterizing the intricate spatio-temporal patterns 

in EEG signals, their performance is limited. 

 

4.2. Deep Learning Models 

The accuracy of classification was further enhanced by using deep learning architectures. CNNs were used to 

exploit spatial correlation between the EEG electrodes whilst LSTM networks were used to capture temporal 

correlation in time-ordered EEG data. 

 

Table 3. Performance of EEG Biometric Models 

Model Accuracy FAR FRR EER 

CNN 0.94 0.05 0.04 0.045 

LSTM 0.96 0.04 0.03 0.035 

 

Table 4. Deep Learning ROC-AUC Scores 

Model ROC AUC 

CNN 0.92 

LSTM 0.95 

 

The overall performance, expressed in Table 3, Table 4, shows a significant increase over classical models. The 

CNN reached the accuracy of 94% and an EER of 0.045, whereas the LSTM surpassed all other models achieving 

the accuracy of 96% and an EER of 0.035. These advances can be explained by the capacity of CNNs and LSTMs 

to obtain hierarchical and temporal features directly out of EEG data, so that there is less need to build handcrafted 

features. 

 
Figure 4. ROC Curve for Deep Learning Models 

 

Figure 4 presents the ROC and AUC values of CNN and LSTM, and based on the AUC values, CNN is clearly 

performing differently to LSTM. The LSTM was able to surpass the AUC of 0.92 of the CNN with the LSTM 

having an AUC of 0.95. The curves shows that both the models have high TP rate when there is a large FP 

threshold, thus both of them are highly generalizable and robust as they can continue to differentiate between 

genuine attempts and impostor attempts. 

 

These results show that deep learning may be effective in EEG biometrics, especially when flawless protection of 

critical infrastructure is a key factor. 
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4.3. Cross-Session & Stress Analysis 

An essential feature of biometric systems in an operational setting is robustness between sessions and under stress 

different conditions. In order to assess cross-session consistency, EEG signals in various sessions of the same 

subjects were compared. Results showed that whereas the classical models performed at 5-7% lower on the second 

session, the deep and learning models had a stable performance variance of less than 2%, demonstrating that they 

are ideally suitable to use in biometric systems that require long-term use. 

 

The study was further generalized to the states induced by stress, where analysis of the mental arithmetic tasks in 

the M3CV dataset was used. The tasks resemble conditions of high cognitive demand and stress, which operators 

in control centers/substations, respectively, can encounter in the course of making critical decisions. The findings 

showed that EEG characteristics were distinctive enough even in the case of stress. LSTM models only declined 

in accuracy by a small margin (96% to 94%), and CNNs (94% to 92%). On the other hand, SVM and RF had 

greater declines of around 5-8% and kNN reduced nearly 10%. 

 

This analysis supports the idea that cognitive-task-based authentication protocols offer greater firmness because 

stress-induced EEG responses are (much) more individual specific, but have the variability that cannot be spoofed. 

In practical terms, such authentication systems based on EEG signals could be used in challenging operational 

environments without losing its reliability as is required in nuclear plants, SCADA control rooms and financial 

centers. 

 

4.4. Comparison with Other Biometrics 

The EEG biometrics were then contrasted with the traditional methods, including the fingerprint and iris, to situate 

the possible benefits of using EEG biometrics in niche high-security operations. Although fingerprints have 

accuracies above 95% and iris scan above 98% accuracy in constrained situations, both biometrics can be defeated 

by spoofing methods including artificial molds, synthetic contact lenses, or high-resolution photography. 

Moreover, once they are compromised, these biometrics cannot be revoked and reissued. 

 

Unlike neural network-based EEG methods, EEG biometrics are inherently resistant to spoofing because they are 

both internal and dynamic. The use of cognitive-task challenge response rules makes each authentication task-

specific and ensures it requires live, task-specific neural responses, making replay and coercion attacks ineffective. 

Practical EEG deployment is the vision of the currently existing EEG systems, which require specialized 

hardware, but the parallel development of portable and non-invasive EEG headsets is highly likely, considering 

its rapid pace. 

 

EEG biometrics have the complexity required to add a more robust layer of security to critical infrastructures. In 

places like nuclear plants or power substations where unauthorized access can have devastating effects, EEG will 

provide a future proof solution that is resistant to breaking, and more resilient than traditional biometrics. 

 

DISCUSSION 

 

The outcome of this research has significant impacts on the security of the critical infrastructure, most especially 

those dealing with the power industry. Critical facilities such as control rooms, substations, and SCADA systems 

are some of the most sensitive operational areas, and unauthorized access will ultimately mean the difference 

between a catastrophic or successful resolution of the national safety or security [29]. Passwords or card-based 

tokens are prone to social engineering, theft or cloning, even more advanced bio-metric systems as fingerprint 

scanners or iris scanners can be spoofed using synthetic copies. EEG-based authentication provides a more 

powerful alternative in that the basis of authentication draws on neural signals that are involuntary, constantly 

changing, and nearly impossible to reproduce [4, 9]. 

 

EEG biometrics enhances the SCADA security concepts by providing the supplementary security measures since 

every user has to have a permission in order to gain access to control interface [1, 29] . Since the system uses 

cognitive task-based challenge-response procedures it is live neural engaged and hence unable to be replayed and 

is therefore better guarded against coercion. EEG biometrics is especially important in places where there is 

potential insider threat or is a place with a sophisticated adversary [9]. The EEG-based authentication is architected 

such that it can become part of more established access controls already implemented in IEC 61850 and NERC 

CIP security standards, giving utilities layers of additional protection against long-standing weaknesses. 
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The study illustrates a number of strengths that support the practicality of EEG biometrics in providing protection 

to a critical infrastructure. First, the internal value of EEG signals discourages theft and spoofing because the 

signals are directly related to electrodes imprinted on the head. As opposed to the external identifiers, they cannot 

be indicated at a distance or created through artificial molds. Second, due to cognitive-task variability, 

authentication is based on active neural responses, which provides a moving target against static attempts to spoof 

authentication. Third, the experiments are highly repeatable in the sense that the EEG signatures have high 

discrimination power across multiple recording sessions and varying stress. Such consistency is a testament to the 

effectiveness of EEG as a biometric solution over the long-term. 

 

The performance of the deep learning models is another strength of the approach as it works much better than 

classical machine learning approaches. LSTMs, especially, reveal temporal dependencies in the sequences of EEG 

data, resulting in an accuracy of more than 95% and a very low Equal Error Rate (EER). The combination of this 

performance with the ability to withstand the kind of variability induced by stress, denotes EEG biometrics as a 

viable and safe choice when it comes to sensitive applications. 

 

CONCLUSION 

 

This research has confirmed the possibility and benefits of the biometric authentication system using EEG to 

protect critical infrastructure. The M3CV dataset was utilised to create and test a cognitive-task-based 

authentication protocol against both conventional machine learning models as well as more complex deep learning 

architectures. Analytically, the results establish that EEG biometrics can be used to obtain a secure authentication 

that has accuracies greater than 95% with a low EER. State-of-the-art deep learning models, in particular the 

LSTMs, emerged as better choices to embrace the temporal information of neural signals that is complex in nature. 

Particularly the experiments confirmed that EEG patterns are robust to stress, warranting their use in real-world 

control settings where an operator experiences mental load and pressure. 

 

The work has two-fold contributions. At first, it is among the early attempts to match EEG biometrics into the 

power infrastructure protection and offer its application in the field of SCADA and substation cybersecurity. 

Second, it presented and validated a cognitive-task challenge response-protocol within M3CV data showing 

consistency in sessions and stress-inducing challenges. Collectively, these contributions show that EEG, in 

conjunction with biometric active authentication, is a plausible next-generation biometric toward building an ultra-

secure access control system in critical infrastructures. 

 

In the future, it is worth pursuing multi-modal fusion methods, where different biometrics, like EEG paired with 

other biometrics like ECG, keystroke dynamics or voice recognition can be further integrated to enhance its 

security. More extensive data sets and field-bases at substations or control centers are needed to confirm operation 

performance under operational requirements. Lastly, it is recommended to deploy EEG authentication in real-time 

embedded systems as a part of cybersecurity framework of the smart grid using lightweight neural networks 

optimised to use edge computing. Such directions should be critical towards shifting EEG biometrics operations 

not only to experimental validation but also to a viable and scalable operation with respect to the critical 

infrastructure security. 
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