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ABSTRACT:

Background: Prostate-specific membrane antigen= Positron Emission tomography (PSMA PET) images' manual
interpretation can lead to a considerable number of missed metastatic Prostate cancer lesions. Therefore,
Radiomics has been utilized as a novel high-potential method. However, its features lack sufficient evidence
regarding their robustness and reproducibility. Consequently, we opted to assess such features in cases with
metastatic Prostate cancer.

Materials and Methods: Our study was carried out in a tertiary referral center during 2021 and 2022 on prostate
cancer cases undergoing 68 Ga-PSMA-PET/CT imaging. Initially, the PET/CT scan findings were analyzed using
Python's PyRadiomics tool to extract first-order and tissue-related characteristics. Then, the segmentation of the
said features was manually carried out and classified into their respective categories. Their repeatability was
ultimately determined by measuring the Intraclass Correlation Coefficients (ICCs).

Results: A total of 150 PSMA-PET/CT images were investigated, leading to the extraction of 101 features, among
which 1, 3, and 10 had excellent, good, and moderate repeatability, respectively. Out of all the ICC values, only
three were statistically significant. These values were for Low Gray-Level Run Emphasis (LGLRE; ICC = 0.799,
p = 0.047) and Long-Run Low Gray-Level Emphasis (LRLGLE; ICC = 0.801, p = 0.045) in the Gray-level run
length matrix as well as Low Gray-Level Emphasis (LGLE; ICC =0.906, p = 0.003) in the Gray-level dependence
matrix.

Conclusion: Several PSMA-PET/CT-derived radiomics features have significant metastasis-predicting values in
metastatic Prostate cancer. However, future studies must assess the agreement between these features and clinical
and histological parameters.

Keywords: Prostate cancer; Ga-PSMA-PET/CT Radiomics; reproducibility; intraclass correlation coefficient (ICC).

INTRODUCTION

As one of the most common malignant tumors in male cancer statistics, Prostate cancer (PCa) should be suspected
if the results of a digital rectal examination are indicative or if there is an increase in prostate-specific antigen
(PSA) levels in the blood after which it is recommended to perform a transrectal ultrasonography (TRUS) guided
biopsy to confirm the presence of any abnormal tissue [1]. In addition, although therapy has shown significant
success rates, the death rates of the disease remain elevated, while also 20-50% experience recurrence during
follow-up. [2].
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Nevertheless, the invasive nature of prostate biopsies is linked to adverse events, including pain, hematuria, and
infection. Therefore, imaging techniques like magnetic resonance imaging (MRI) and computed tomography (CT)
have been introduced. These modalities offer valuable information regarding the localization and staging of PCa
[3]. Nevertheless, the accuracy of this information is demonstrated to be adequate when considering the molecular
data obtained from Positron Emission Tomography (PET) [4].

In addition, Positron Emission Tomography (PET), utilizing 68 Ga-PSMA as the radiotracer, along with
Computed Tomography (CT) (PET/CT), has become a valuable and accurate method for screening and diagnosing
metastases in PCa [5]. Thus, Ga68-PSMA-PET/CT imaging has been widely accepted as the most reliable method
for reevaluating recurrent PCa. Moreover, increasing evidence suggests that it can effectively replace routine
imaging for the initial staging of high-risk patients [6]. However, the interpretation of images in Ga68-(PSMA)
PET-CT imaging is usually carried out manually and via visual assessment by specialists and based on their
experience, potentially leading to misdiagnosing many intraprostatic and metastatic lesions due to their small size
or shape [7].

Radiomics is a newly developed approach that extracts quantitative data via computational methods on various
imaging modalities, including PET, MRI, CT, and molecular hybrid imaging. These numerical measurements are
then used to create prediction models, which help diagnose, plan treatment, and predict outcomes of various cancer
and neurological disorders [8]. Nevertheless, despite its numerous advantages, most radiomics features suffer
from a lack of uniformity and heterogeneity in segmentation, pre-processing settings of images, and machine
learning pipeline. This limitation hinders their reproducibility, particularly in the case of PCa [4].

Moreover, the most common limitation of previous studies on radiomics in metastatic PCa was their lack of
validation on external datasets [1]. Hence, our objective was to assess the resilience and consistency of radiomics
characteristics in response to variations in the size, number, location, and shape of the lesions depicted in Ga68-
PSMA-PET/CT images.

MATERIALS AND METHODS

Study Design

The following retrospective analysis was conducted on the records of patients with prostate cancer (PCa) available
at our PET/CT center during the two years leading up to the initial phase of the study. We obtained the necessary
permits from relevant institutional bodies, including technical and ethical protocol approval from the Institutional
Review Board (IRB).

Our study was carried out in three phases. We retrospectively selected eligible patients for analysis in phase one
and obtained their PET-CT images. In phase two, we performed radiomics analysis, which consisted of five steps:
image pre-processing, image acquisition, feature extraction, feature classification, and descriptive feature analysis.
In phase three, we investigated the reproducibility of the extracted features. (Figure 1)

[Figure 1]

Population

The study included patients with metastatic prostate cancer who had a positive result for metastasis on Ga68-
PSMA PET/CT imaging during the specified period. Patients with a confirmed diagnosis based on biopsy,
elevated serum PSA, and a history of receiving targeted therapy before the PET/CT scan (such as surgical removal,
chemotherapy, or radiotherapy) were included. However, patients with primary non-metastatic benign or
malignant lesions in their liver, kidneys, spine, and other possible metastatic sites of prostate cancer were
excluded. The study documented the age, weight, PSA level at diagnosis and its latest levels, prostate cancer
staging phase (initial staging or restaging), and the anatomic locations of all segmented volumes for the included
individuals.

Sample size determination
The sample size was determined using the intraclass correlation coefficient (ICC) as a basis, as described by
Bonett [9], the formula for which is brought below (where z =1.92, k = 2, ® = 0.09 and p = 0.85).

n=822,{(1 = 3 P(1 + (k = D)p) }/{k(k — w?} + 1
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Moreover, the values required for the formula were obtained from similar studies [10, 11]. Therefore, with the
significance level for ICC assumed at 0.85 and the study's statistical power of 0.95, along with a type 1 error of
0.05, a minimum sample size of 120 cases was determined. In addition, by considering a 20% dropout rate in the
sample, a final sample size of 150 cases was calculated.

Imaging protocols and settings

The imaging process was conducted using a specific 64-slice PET/helical CT scanner, the Philips Ingenuity
PET/CT Time—of-Flight system (United States). The CT scanner was set to the following parameters: tube voltage
of 140 kVp, tube current of 800 mAmax, matrix size of 512 x 512, and voxel size of 1.37 x 1.37 x 3.75 mm3.
Moreover, the PET scanner (matrix = 256 x 256) had a collection time of 90 seconds per bed, with 10 beds
required for a whole-body scan. In addition, the 68Ga-PSMA PET radiotracer (2-2.2 MBqg/kg) was injected
intravenously in a single dose 60 minutes before the scans.

Image Segmentation

Once PET/CT scans were uploaded to mat Radiomics 1.5, image segmentation was manually performed to extract
PCa volumes. For this purpose, an experienced Nuclear Medicine specialist manually performed the diagnostics
using slice-by-slice delineation. The Digital Imaging and Communications in Medicine (DICOM) data, which
consist of a complete set of CT images, and the 68 Ga-PSMA PET/CT pictures were loaded and segmented using
the standard segment editor tool, 3D slicer (Figure 2) [12].

[Figure 2]

Furthermore, the metastatic target sites/organs, including the liver, lumbar vertebrae, pelvis, and distant lymph
nodes such as femoral, left iliac, parailiac, and abdominal lymph nodes, were manually identified and segmented
in each patient using PET/CT imaging.

Feature Extraction

We repeatedly extracted each image's features using manual segmentations, then computed them using
PyRadiomics version 2.02 and integrated them into the matRadiomics software [13]. In addition, features were
extracted using Laplacian of Gaussian (LOG) sigma values ranging from 0.5 to 5 with 0.5 increments, Wavelet
decomposition (WAV), and a Bin width of 20. Other parameters were left to default.

Afterward, a total of 101 characteristics were derived from the dataset. The features were further classified into
three categories consisting of (1) Shape and morphology-based, (2) First Order Statistics, and (3) Texture.
Additionally, the latter features were classified into distinct categories, consisting of the gray level dependence
matrix (GLDM), neighboring gray-tone difference matrix (NGTDM), gray level run length matrix (GLRLM),
gray level size zone matrix (GLSZM), and gray level co-occurrence matrix (GLCM). (Table 1)

[Table 1]

Feature Robustness

Following the extraction of features, each feature had its Intraclass Correlation Coefficient (ICC) computed to
measure the degree of consistency between observers and assess the reliability of the features while utilizing three
different segmentation approaches.

Furthermore, the ICC value was calculated using McGraw and Wong's formula to assess absolute agreement,
where ICC = MSR — MSE. The formula (2) calculates the value of MSR by adding the product of (k - 1) and
MSE, the product of k, n, and the difference between MSC and MSE. In this formula, MSR represents the mean
square for rows, MSE represents the mean square error, MSC represents the mean square for columns, k represents
the number of observers engaged, and n represents the number of subjects. The variable j denotes the j-th feature,
and KClass represents each class's total number of features [14]. Consequently, the average of ICCs was
determined after grouping features according to their category using the formula below. This act resulted in
generating mean ICC values for radiomics features in the Shape, FOS, GLCM, GLDM, GLRLM, GLSZM, and
NGTDM categories:

ICCClass = 1 KClass Y KClass j=1 ICCj
Furthermore, the ICC value spans from O (indicating absence of reproducibility) to 1 (indicating flawless
reproducibility). Furthermore, adhering to the standards set forth by Koo and Li [15], ICC values < 0.5, between
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0.5 and 0.75, between 0.75 and 0.9, and > 0.9 indicated poor, moderate, good, and excellent feature
reproducibility, respectively.

Statistical Analysis

Using the 26" version of the SPSS statistical software (IBM Corp. Released 2019. IBM SPSS Statistics for
Windows, Version 26.0. Armonk, NY: IBM Corp). Given that the data did not follow a normal distribution
(determined by the Kolmogorov-Smirnov test), we employed the Kruskal-Wallis test to determine whether the
feature classes (Shape and morphology, FOS, GLCM, GLRLM, GLSZM, GLDM, and NGTDM) had a
statistically significant effect on the ICC values for each image type (original, LoG, wavelet). Furthermore, 95%
confidence intervals were computed for each model's performance by 1000 bootstraps. p < 0.05 were considered
statistically significant.

RESULTS

Clinical Data

We obtained PET-CT images from 150 patients averaging 68.6 + 7.08 years suffering from metastatic PCa in
various stages. Moreover, they weighed 73.19 + 10.46 kg and had a mean PSA level of 6.5 + 12.2 ng/ml at PCa
diagnosis. In addition, the majority were in the restaging stage (79.3%) and had a positive history of prostatectomy
(60%), while most had a latest PSA level below 20 ng/ml. Other relevant characteristics of these individuals are
brought in Table 2.

[Table 2]

Feature Robustness

Among the 101 radiomic features extracted and deemed robust, 18 features belonged to the FOS category, 23 to
the GLCM, 16 to the GLRLM, 14 to the shape and morphology, 15 to the GLSZM, 12 to the GLDM and 5 to the
NGTDM.

Feature Reproducibility

Evaluating the reproducibility of the extracted features revealed that three had significant reproducibility. These
features included Low Gray-Level Run Emphasis (LGLRE) (ICC = 0.799, p = 0.047) and Long-Run Low Gray-
Level Emphasis (LRLGLE) (ICC = 0.801, p = 0.045) from the GLRLM category, along with Low Gray-Level
Emphasis (LGLE) (ICC = 0.906, p = 0.003) from the GLDM category. (Table 3)

[Table 3]

Low Gray Level Emphasis (ICC = 0.906) had excellent reproducibility when assessed based on their
reproducibility grade. Moreover, Long Run Low Gray Level Emphasis (ICC = 0.801), Low Gray Level Run
Emphasis (ICC = 0.799), and Short Run Low Gray Level Emphasis (ICC = 0.79) had good reproducibility.
Furthermore, 10 features, consisting of Large Dependence Low Gray Level Emphasis (ICC = 0.747), Uniformity
(ICC = 0.682), Minor Axis Length (ICC = 0.628), Mesh Volume (ICC = 0.589), Run Length Non-Uniformity
(ICC = 0.588), Voxel Volume (ICC = 0.588), Maximum Probability (ICC = 0.561), Minimum (ICC = 0.552),
Surface Area (ICC = 0.533), and Run Percentage (ICC = 0.521) had moderate reproducibility. However, the rest
had poor reproducibility. (Figure 3)

[Figure 3]

DISCUSSION

As the 68 Ga-(PSMA) PET-CT image analysis is carried out manually and primarily based on experience, many
PCa primary and secondary lesions could remain undetected [7]. However, radiomics models, as a hovel method
of quantifying computerized values derived from imaging, have not yet found significant application in the clinic,
with their robustness and reproducibility needing to be determined first [16]. Hence, this study aimed to determine
the most reliable characteristics of metastatic PCa. The findings revealed that among the 101 features analyzed,
14 exhibited a moderate to high level of reproducibility. Notably, the features of Low Gray-Level Emphasis,
Long-Run Low Gray-Level Emphasis, and Low Gray-Level Run Emphasis demonstrated statistically significant
ICC values.

In our study, Low Gray-Level Run Emphasis and Long-Run Low Gray-Level Emphasis of the GLRLM category
had moderate reproducibility. In addition, low gray-level emphasis from the GLDM category had excellent and
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significant reproducibility. However, this feature was the only one with excellent reproducibility. A study assessed
the strength of features extracted by manual and semi-automatic segmentation of a 3D MRI prostate model,
finding that gray-level texture-based features exhibited high interclass correlation coefficients (ICCs) and showed
good to excellent reproducibility [17]. Similarly, another study showed that gray-level texture-based features
performed better than FOS and Shape and morphology-based features, stating that shape and morphology-based
were the most sensitive to the segmentation method [10]. Nevertheless, this issue highlights the importance of
further investigating features based on semi-automatic and automatic segmentation.

In addition, although several other features from FOS, GLCM, Shape and morphological features, GLSZM, and
NGTDM categories had moderate or good reproducibility, their analyses were not statistically significant.
However, it has been reported in a systematic review that FOS features provide the most robust results among the
radiomics features, even though the Uniformity feature was the only one with good reproducibility [18].
Moreover, Kurtosis, another feature of FOS, showed significant reproducibility according to another study and
had a high prognostic value in predicting the survival of patients with PCa [19]. In another study, the GLSZM
feature High Gray-level Emphasis was also determined to have high reproducibility, accurately distinguish tumors
with a Gleason score higher than eight, and predict the involvement of distant lymph nodes [20]. Among the
GLCM category, Entropy-based features also demonstrated high reproducibility for PSA changes, PCa diagnosis,
and recurrence [21]. Additionally, another study found that Histo_Entropy, a measure of entropy-based tissue
properties, demonstrated the highest sensitivity and specificity in identifying metastatic PCa. However, Small-
zone Low Grey-level Emphasis and HISTO_energy Uniformity showed the most substantial predictive values for
lymph node involvement [22].

Furthermore, analyzing radiomic characteristics in PSMA-PET/CT images across multiple studies has produced
diverse outcomes due to variations in device types, settings, image acquisition techniques, segmentation
methodologies, and definitions of tissue features. Consequently, interpreting the results poses a challenge [18, 23-
25]. Furthermore, in contrast with previous studies, we focused more on PCa metastasis to lymph nodes and
potential target organs, which can explain the differences in results. Nevertheless, assessing the accuracy of our
findings and the reproducibility of extracted features in other centers and device models and settings is necessary.
One of the limitations of the current study is the examination of PET/CT images in a single center obtained from
a single device model. Furthermore, assessing the dependability of the described highly consistent characteristics
in differentiating between healthy/benign tissues and malignant/metastatic lesions is crucial in determining which
characteristics are suitable for machine learning models based on PSMA-PET/CT.

Besides, it cannot be confidently stated that the current results would yield similar results on other real-life datasets
of metastatic PCa, as radiomics features are generally influenced by various clinical and imaging-related factors.
Therefore, we recommend using features from our analysis in future studies. Furthermore, the agreement rate
between the said features and biopsy results must be determined in future studies. Ultimately, we conclude that
three features, low gray-level emphasis, low gray-level run emphasis, and long-run low gray-level emphasis, have
the highest reproducibility and potential for detecting metastatic PCa.
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Table 1. Features extracted from PET-CT images based on their categories
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Table 2. Demographic and clinical characteristics of participants

Characteristic Participants No. = 150
Age (years), mean = SD 68.6 £ 7.08
Weight (Kilograms), mean £ SD 73.19 +10.46
PSA level at diagnosis (ng/ml), mean £ SD 6.5+12.2
Mediastinal Blood Pool SUV, mean + SD 1.24 +0.27
Current staging, No. (%)
Unknown 1 (0.7%)
Initial staging 30 (20%)
Restaging 119 (79.3%)
History of prostatectomy, No. (%6)
Unspecified 4(2.7%)
Negative 56 (37.3%)
Positive 90 (60%)
Latest PSA level, No. (%)
Below 20 ng/ml 132 (93%)
Above 20 ng/ml 10 (7%)

Abbreviations: SUV, Standardized Uptake Value; PSA, Prostate Specific Antigen

Table 3. Intraclass correlation coefficient of the extracted features
95% CI of ICC

Feature ICC — — P-value
lower limit upper limit
First-order statistics (FOS)

Energy 0.241 -3.972 0.999 0.273
Total Energy 0.241 -3.972 0.999 0.273
Entropy 0.197 -4.261 0.999 0.286
Minimum 0.552 -1.937 1 0.161
10" percentile 0.366 -3.156 0.999 0.233
90™ percentile -0.487 -8.744 0.998 0.428
Maximum -22.84 -159.306 0.975 0.841
Mean -3.413 -27.921 0.995 0.643
Median -7.071 -51.895 0.992 0.731
Interquartile range 0.421 -2.794 0.999 0.213
Range -9.062 -64.942 0.99 0.758

Mean absolute deviation

(MAD) 0.11 -4.831 0.999 0.31
Robust Mean absolute
deviation (rMAD) 0.373 -3.106 0.999 0.23
Root Mean squared
(RMS) -2.438 -21.534 0.996 0.6
Skewness -3.437 -28.079 0.995 0.643
Kurtosis 0.165 -4.474 0.999 0.295
Variance 0.21 -4.18 0.999 0.283
Uniformity 0.682 -1.081 1 0.101
Gray-level co-occurrence matrix (GLCM)
Autocorrelation 0.254 -3.886 0.999 0.269
Joint average -0.285 -7.424 0.999 0.395
Cluster prominence 0.278 -3.734 0.999 0.262
Cluster shade -1.727 -16.871 0.997 0.556
Cluster tendency 0.185 -4.343 0.999 0.29
Contrast -4.138 -32.675 0.995 0.667
Correlation -10.352 -73.401 0.988 0.772
Difference average -2.797 -23.884 0.996 0.617
Difference entropy -2.074 -19.145 0.997 0.579
Difference variance -270.435 -1777.92 0.722 0.953
Joint energy 0.478 -2.42 0.999
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Joint entropy 0.303 -3.567 0.999 0.254
Informal measure of

correlation (IMC) 1 -21.412 -145.883 0.977 0.836

Informal measure of
correlation (IMC) 2 -7.586 -55.271 0.991 0.739
Inverse difference

moment (IDM) -0.017 -5.667 0.999 0.341
Inverse Difference
Moment Normalized -793.773 -5207.76 0.186 0.972
(IDMN)
Inverse difference (I1D) -0.307 -7.567 0.999 0.399
Inverse Difference
Normalized (IDN) -50.082 -333.78 0.948 0.891
Inverse variance -4.581 -35.578 0.994 0.68
Maximum probability 0.561 -1.874 1 0.157
Sum average -0.285 -7.424 0.999 0.395
Sum entropy 0.238 -3.995 0.999 0.274
Sum of squares 0.175 -4.404 0.999 0.292
Gray-level run length matrix (GLRLM)
Short-run emphasis
(SRE) 0.478 -2.419 0.999 0.191
Long-run emphasis
(LRE) 0.347 -3.28 0.999 0.24
Gray-Level Non-
Uniformity (GLN) 0.408 -0.802 0.929 0.167
Gray-Level Non-
Uniformity Normalized -0.208 -6.918 0.999 0.381
(GLNN)
Run Length Non-
Uniformity (RLN) 0.588 -1.342 1 0.132
Run Length Non-
Uniformity Normalized 0.327 -3.413 0.999 0.246
(RLNN)

Run percentage (RP) 0.521 -2.14 1 0.174
Run variance (RV) 0.355 -3.228 0.999 0.237
Run entropy (RE) -0.106 -6.249 0.999 0.36

Low Gray-Level Run

Emphasis (LGLRE) 0.799 -0.349 1 0.047

High Gray-Level Run

Emphasis (HGLRE) 0.26 -3.848 0.999 0.268

Short-Run Low Gray-

Level Emphasis 0.79 -0.412 1 0.052
(SRLGLE)
Short-Run High Gray-
Level Emphasis 0.269 -3.789 0.999 0.265
(SRHGLE)

Long-Run Low Gray-

Level Emphasis 0.801 -0.307 1 0.045
(LRLGLE)
Long-Run High Gray-
Level Emphasis -0.116 -6.313 0.999 0.362
(LRHGLE)
Shape and morphological features
Voxel Volume 0.588 -1.697 1 0.145
Mesh Volume 0.589 -1.697 1 0.145
Surface area 0.533 -2.06 1
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Surface area to volume

ratio 0.143 -4.616 0.999 0.301

Sphericity -26.783 -181.083 0.972 0.853

Maximum 3D diameter -0.028 -5.912 0.999 0.345

Maximum 2D diameter 0.14 6.472 0.999 0.367
(slice)

Maximum 2D diameter 0.401 -3.025 0.999 0.223
(column)

Max'm””(‘}gv'a)d'ameter -3.589 -29.855 0.995 0.65
Major axis -0.795 -10.761 0.998 0.47
Minor axis 0.628 -1.503 1 0.129
Least axis -0.536 -9.332 0.998 0.437
Elongation .359¢ -3.199 0.999 0.235

Flatness -0.083 -6.096 0.999 0.356
Gray-Level Size Zone Matrix (GLSZM)
Small Area Emphasis
(SAE) -2.716 -23.351 0.996 0.613
Large Area Emphasis i
(LAE) 0.452 2.591 0.999 0.202
Gray-Level Non-
Uniformity (GLN) 0.408 -0.802 0.929 0.167
Gray-Level Non-
Uniformity Normalized -0.208 -6.918 0.999 0.381
(GLNN)
Size-Zone Non-
Uniformity (SZN) 0.23 -4.049 0.999 0.277
Size-Zone Non-
Uniformity Normalized -1.505 -15.415 0.997 0.539
(SZNN)

Zone Percentage (ZP) -0.941 -11.721 0.998 0.487
Zone variance (ZV) 0.452 -2.593 0.999 0.202
Zone entropy (ZE) -5.042 -38.595 0.994 0.691

Low Gray-Level Zone
Emphasis (LGLZE) 0.084 -5.001 0.999 0.317

High Gray-Level Zone
Emphasis (HGLZE) 0.261 -3.843 0.999 0.267

Small Area Low Gray-

Level Emphasis -0.495 -8.797 0.998 0.429
(SALGLE)

Small Area High Gray-

Level Emphasis 0.276 -3.748 0.999 0.263
(SAHGLE)

Large Area Low Gray-

Level Emphasis -0.495 -8.797 0.998 0.429
(LALGLE)

Large Area High Gray-

Level Emphasis 0.276 -3.748 0.999 0.263
(LAHGLE)

Gray-level dependence matrix (GLDM)
Small Dependence

Emphasis (SDE) -0.856 -11.167 0.998 0.477
Large Dependence )

Emphasis (LDE) 0.486 2.368 0.999 0.188
Dependence Non- 0.452 2118 0.999

Uniformity (DN)
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Dependence Non-

Uniformity Normalized -2.002 -18.675 0.997 0.575
(DNN)
Dependence variance
(DV) 0.47 -2.475 0.999 0.195
Depe“d?BCEe)emmpy 0.212 -4.166 0.999 0.282
Low Gray-Level
Emphasis (LGLE) 0.906 0.462 1 0.003
High Gray-Level
Emphasis (HGLE) 0.26 -3.849 0.999 0.268
Small Dependence Low
Gray-Level Emphasis -203.302 -1337.951 0.791 0.945
(SDLGLE)
Small Dependence High
Gray-Level Emphasis 0.292 -3.641 0.999 0.258
(SDHGLE)
Large Dependence Low
Gray-Level Emphasis 0.747 -0.66 1 0.07
(LDLGLE)
Neighboring gray-tone difference matrix (NGTDM)

Coarseness -7.119 -55.317 0.992 0.733
Contrast -4.138 -32.675 0.995 0.667
Busyness 0.522 -2.132 1 0.174

Complexity -0.109 -6.27 0.999 0.361
Strength -6.866 -50.555 0.992 0.728

Abbreviations: ICC, Intraclass correlation coefficient; Cl, Confidence interval.
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Figure 3

Figure legends

Figure 1. Study's phases and steps, along with PET/CT images used for segmentation

Figure 2. Intraclass correlation coefficient (ICC) of the most repeatable extracted radiomics features
Figure 3. Number of features with excellent, good, moderate, and poor reproducibility
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