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ABSTRACT: 

Background: Prostate-specific membrane antigen= Positron Emission tomography (PSMA PET) images' manual 

interpretation can lead to a considerable number of missed metastatic Prostate cancer lesions. Therefore, 

Radiomics has been utilized as a novel high-potential method. However, its features lack sufficient evidence 

regarding their robustness and reproducibility. Consequently, we opted to assess such features in cases with 

metastatic Prostate cancer. 

Materials and Methods: Our study was carried out in a tertiary referral center during 2021 and 2022 on prostate 

cancer cases undergoing 68 Ga-PSMA-PET/CT imaging. Initially, the PET/CT scan findings were analyzed using 

Python's PyRadiomics tool to extract first-order and tissue-related characteristics. Then, the segmentation of the 

said features was manually carried out and classified into their respective categories. Their repeatability was 

ultimately determined by measuring the Intraclass Correlation Coefficients (ICCs). 

Results: A total of 150 PSMA-PET/CT images were investigated, leading to the extraction of 101 features, among 

which 1, 3, and 10 had excellent, good, and moderate repeatability, respectively. Out of all the ICC values, only 

three were statistically significant. These values were for Low Gray-Level Run Emphasis (LGLRE; ICC = 0.799, 

p = 0.047) and Long-Run Low Gray-Level Emphasis (LRLGLE; ICC = 0.801, p = 0.045) in the Gray-level run 

length matrix as well as Low Gray-Level Emphasis (LGLE; ICC = 0.906, p = 0.003) in the Gray-level dependence 

matrix. 

Conclusion: Several PSMA-PET/CT-derived radiomics features have significant metastasis-predicting values in 

metastatic Prostate cancer. However, future studies must assess the agreement between these features and clinical 

and histological parameters. 

Keywords: Prostate cancer; Ga-PSMA-PET/CT Radiomics; reproducibility; intraclass correlation coefficient (ICC). 

 

INTRODUCTION 

 

As one of the most common malignant tumors in male cancer statistics, Prostate cancer (PCa) should be suspected 

if the results of a digital rectal examination are indicative or if there is an increase in prostate-specific antigen 

(PSA) levels in the blood after which it is recommended to perform a transrectal ultrasonography (TRUS) guided 

biopsy to confirm the presence of any abnormal tissue [1]. In addition, although therapy has shown significant 

success rates, the death rates of the disease remain elevated, while also 20-50% experience recurrence during 

follow-up. [2].  

https://pspac.info/index.php/dlbh/article/view/134
mailto:hadisealimoradi99@gmail.com
mailto:Kamaryana@yahoo.com
mailto:p_shirmardi@aut.ac.ir
mailto:elhsaniei@gmail.com
mailto:msbarough@iauctb.ac.ir
mailto:m.s.barough@gmail.com


 

年 2025 體積 52問題 4  
60 DOI: 10.46121/pspc.52.4.6 

 

Nevertheless, the invasive nature of prostate biopsies is linked to adverse events, including pain, hematuria, and 

infection. Therefore, imaging techniques like magnetic resonance imaging (MRI) and computed tomography (CT) 

have been introduced. These modalities offer valuable information regarding the localization and staging of PCa 

[3]. Nevertheless, the accuracy of this information is demonstrated to be adequate when considering the molecular 

data obtained from Positron Emission Tomography (PET) [4]. 

 

In addition, Positron Emission Tomography (PET), utilizing 68 Ga-PSMA as the radiotracer, along with 

Computed Tomography (CT) (PET/CT), has become a valuable and accurate method for screening and diagnosing 

metastases in PCa [5]. Thus, Ga68-PSMA-PET/CT imaging has been widely accepted as the most reliable method 

for reevaluating recurrent PCa. Moreover, increasing evidence suggests that it can effectively replace routine 

imaging for the initial staging of high-risk patients [6]. However, the interpretation of images in Ga68-(PSMA) 

PET-CT imaging is usually carried out manually and via visual assessment by specialists and based on their 

experience, potentially leading to misdiagnosing many intraprostatic and metastatic lesions due to their small size 

or shape [7]. 

 

Radiomics is a newly developed approach that extracts quantitative data via computational methods on various 

imaging modalities, including PET, MRI, CT, and molecular hybrid imaging. These numerical measurements are 

then used to create prediction models, which help diagnose, plan treatment, and predict outcomes of various cancer 

and neurological disorders [8]. Nevertheless, despite its numerous advantages, most radiomics features suffer 

from a lack of uniformity and heterogeneity in segmentation, pre-processing settings of images, and machine 

learning pipeline. This limitation hinders their reproducibility, particularly in the case of PCa [4]. 

 

Moreover, the most common limitation of previous studies on radiomics in metastatic PCa was their lack of 

validation on external datasets [1]. Hence, our objective was to assess the resilience and consistency of radiomics 

characteristics in response to variations in the size, number, location, and shape of the lesions depicted in Ga68-

PSMA-PET/CT images.  

 

MATERIALS AND METHODS 

 

Study Design 

The following retrospective analysis was conducted on the records of patients with prostate cancer (PCa) available 

at our PET/CT center during the two years leading up to the initial phase of the study. We obtained the necessary 

permits from relevant institutional bodies, including technical and ethical protocol approval from the Institutional 

Review Board (IRB). 

 

Our study was carried out in three phases. We retrospectively selected eligible patients for analysis in phase one 

and obtained their PET-CT images. In phase two, we performed radiomics analysis, which consisted of five steps: 

image pre-processing, image acquisition, feature extraction, feature classification, and descriptive feature analysis. 

In phase three, we investigated the reproducibility of the extracted features. (Figure 1) 

[Figure 1] 

 

Population 

The study included patients with metastatic prostate cancer who had a positive result for metastasis on Ga68-

PSMA PET/CT imaging during the specified period. Patients with a confirmed diagnosis based on biopsy, 

elevated serum PSA, and a history of receiving targeted therapy before the PET/CT scan (such as surgical removal, 

chemotherapy, or radiotherapy) were included. However, patients with primary non-metastatic benign or 

malignant lesions in their liver, kidneys, spine, and other possible metastatic sites of prostate cancer were 

excluded. The study documented the age, weight, PSA level at diagnosis and its latest levels, prostate cancer 

staging phase (initial staging or restaging), and the anatomic locations of all segmented volumes for the included 

individuals. 

 

Sample size determination 

The sample size was determined using the intraclass correlation coefficient (ICC) as a basis, as described by 

Bonett [9], the formula for which is brought below (where z = 1.92, k = 2, ω = 0.09 and ρ = 0.85).  
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Moreover, the values required for the formula were obtained from similar studies [10, 11]. Therefore, with the 

significance level for ICC assumed at 0.85 and the study's statistical power of 0.95, along with a type 1 error of 

0.05, a minimum sample size of 120 cases was determined. In addition, by considering a 20% dropout rate in the 

sample, a final sample size of 150 cases was calculated. 

 

Imaging protocols and settings 

The imaging process was conducted using a specific 64-slice PET/helical CT scanner, the Philips Ingenuity 

PET/CT Time–of–Flight system (United States). The CT scanner was set to the following parameters: tube voltage 

of 140 kVp, tube current of 800 mAmax, matrix size of 512 × 512, and voxel size of 1.37 × 1.37 × 3.75 mm3. 

Moreover, the PET scanner (matrix =  256 × 256) had a collection time of 90 seconds per bed, with 10 beds 

required for a whole-body scan. In addition, the 68Ga-PSMA PET radiotracer (2-2.2 MBq/kg) was injected 

intravenously in a single dose 60 minutes before the scans. 

 

Image Segmentation  

Once PET/CT scans were uploaded to mat Radiomics 1.5, image segmentation was manually performed to extract 

PCa volumes. For this purpose, an experienced Nuclear Medicine specialist manually performed the diagnostics 

using slice-by-slice delineation. The Digital Imaging and Communications in Medicine (DICOM) data, which 

consist of a complete set of CT images, and the 68 Ga-PSMA PET/CT pictures were loaded and segmented using 

the standard segment editor tool, 3D slicer (Figure 2) [12].  

[Figure 2] 

 

Furthermore, the metastatic target sites/organs, including the liver, lumbar vertebrae, pelvis, and distant lymph 

nodes such as femoral, left iliac, parailiac, and abdominal lymph nodes, were manually identified and segmented 

in each patient using PET/CT imaging. 

 

Feature Extraction 

We repeatedly extracted each image's features using manual segmentations, then computed them using 

PyRadiomics version 2.02 and integrated them into the matRadiomics software [13]. In addition, features were 

extracted using Laplacian of Gaussian (LOG) sigma values ranging from 0.5 to 5 with 0.5 increments, Wavelet 

decomposition (WAV), and a Bin width of 20. Other parameters were left to default. 

  

Afterward, a total of 101 characteristics were derived from the dataset. The features were further classified into 

three categories consisting of (1) Shape and morphology-based, (2) First Order Statistics, and (3) Texture. 

Additionally, the latter features were classified into distinct categories, consisting of the gray level dependence 

matrix (GLDM), neighboring gray-tone difference matrix (NGTDM), gray level run length matrix (GLRLM), 

gray level size zone matrix (GLSZM), and gray level co-occurrence matrix (GLCM). (Table 1) 

 

[Table 1] 

 

Feature Robustness 

Following the extraction of features, each feature had its Intraclass Correlation Coefficient (ICC) computed to 

measure the degree of consistency between observers and assess the reliability of the features while utilizing three 

different segmentation approaches.  

 

Furthermore, the ICC value was calculated using McGraw and Wong's formula to assess absolute agreement, 

where ICC = MSR − MSE. The formula (2) calculates the value of MSR by adding the product of (k - 1) and 

MSE, the product of k, n, and the difference between MSC and MSE. In this formula, MSR represents the mean 

square for rows, MSE represents the mean square error, MSC represents the mean square for columns, k represents 

the number of observers engaged, and n represents the number of subjects. The variable j denotes the j-th feature, 

and KClass represents each class's total number of features [14]. Consequently, the average of ICCs was 

determined after grouping features according to their category using the formula below. This act resulted in 

generating mean ICC values for radiomics features in the Shape, FOS, GLCM, GLDM, GLRLM, GLSZM, and 

NGTDM categories: 

 

ICCClass = 1 KClass ∑ KClass j=1 ICCj 

Furthermore, the ICC value spans from 0 (indicating absence of reproducibility) to 1 (indicating flawless 

reproducibility). Furthermore, adhering to the standards set forth by Koo and Li [15], ICC values < 0.5, between 
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0.5 and 0.75, between 0.75 and 0.9, and >  0.9 indicated poor, moderate, good, and excellent feature 

reproducibility, respectively.  

 

Statistical Analysis 

Using the 26th version of the SPSS statistical software (IBM Corp. Released 2019. IBM SPSS Statistics for 

Windows, Version 26.0. Armonk, NY: IBM Corp). Given that the data did not follow a normal distribution 

(determined by the Kolmogorov-Smirnov test), we employed the Kruskal-Wallis test to determine whether the 

feature classes (Shape and morphology, FOS, GLCM, GLRLM, GLSZM, GLDM, and NGTDM) had a 

statistically significant effect on the ICC values for each image type (original, LoG, wavelet). Furthermore, 95% 

confidence intervals were computed for each model's performance by 1000 bootstraps. p < 0.05 were considered 

statistically significant. 

 

RESULTS 

 

Clinical Data 

We obtained PET-CT images from 150 patients averaging 68.6 ± 7.08 years suffering from metastatic PCa in 

various stages. Moreover, they weighed 73.19 ± 10.46 kg and had a mean PSA level of 6.5 ± 12.2 ng/ml at PCa 

diagnosis. In addition, the majority were in the restaging stage (79.3%) and had a positive history of prostatectomy 

(60%), while most had a latest PSA level below 20 ng/ml. Other relevant characteristics of these individuals are 

brought in Table 2. 

[Table 2] 

 

Feature Robustness 

Among the 101 radiomic features extracted and deemed robust, 18 features belonged to the FOS category, 23 to 

the GLCM, 16 to the GLRLM, 14 to the shape and morphology, 15 to the GLSZM, 12 to the GLDM and 5 to the 

NGTDM. 

 

Feature Reproducibility 

Evaluating the reproducibility of the extracted features revealed that three had significant reproducibility. These 

features included Low Gray-Level Run Emphasis (LGLRE) (ICC = 0.799, p = 0.047) and Long-Run Low Gray-

Level Emphasis (LRLGLE) (ICC = 0.801, p = 0.045) from the GLRLM category, along with Low Gray-Level 

Emphasis (LGLE) (ICC = 0.906, p = 0.003) from the GLDM category. (Table 3) 

[Table 3] 

 

Low Gray Level Emphasis (ICC = 0.906) had excellent reproducibility when assessed based on their 

reproducibility grade. Moreover, Long Run Low Gray Level Emphasis (ICC = 0.801), Low Gray Level Run 

Emphasis (ICC = 0.799), and Short Run Low Gray Level Emphasis (ICC = 0.79) had good reproducibility. 

Furthermore, 10 features, consisting of Large Dependence Low Gray Level Emphasis (ICC = 0.747), Uniformity 

(ICC = 0.682), Minor Axis Length (ICC = 0.628), Mesh Volume (ICC = 0.589), Run Length Non-Uniformity 

(ICC = 0.588), Voxel Volume (ICC = 0.588), Maximum Probability (ICC = 0.561), Minimum (ICC = 0.552), 

Surface Area (ICC = 0.533), and Run Percentage (ICC = 0.521) had moderate reproducibility. However, the rest 

had poor reproducibility. (Figure 3) 

[Figure 3] 

 

DISCUSSION 

 

As the 68 Ga-(PSMA) PET-CT image analysis is carried out manually and primarily based on experience, many 

PCa primary and secondary lesions could remain undetected [7]. However, radiomics models, as a novel method 

of quantifying computerized values derived from imaging, have not yet found significant application in the clinic, 

with their robustness and reproducibility needing to be determined first [16]. Hence, this study aimed to determine 

the most reliable characteristics of metastatic PCa. The findings revealed that among the 101 features analyzed, 

14 exhibited a moderate to high level of reproducibility. Notably, the features of Low Gray-Level Emphasis, 

Long-Run Low Gray-Level Emphasis, and Low Gray-Level Run Emphasis demonstrated statistically significant 

ICC values. 

 

In our study, Low Gray-Level Run Emphasis and Long-Run Low Gray-Level Emphasis of the GLRLM category 

had moderate reproducibility. In addition, low gray-level emphasis from the GLDM category had excellent and 

https://pspac.info/index.php/dlbh/article/view/134


 

年 2025 體積 52問題 4  
63 DOI: 10.46121/pspc.52.4.6 

 

significant reproducibility. However, this feature was the only one with excellent reproducibility. A study assessed 

the strength of features extracted by manual and semi-automatic segmentation of a 3D MRI prostate model, 

finding that gray-level texture-based features exhibited high interclass correlation coefficients (ICCs) and showed 

good to excellent reproducibility [17]. Similarly, another study showed that gray-level texture-based features 

performed better than FOS and Shape and morphology-based features, stating that shape and morphology-based 

were the most sensitive to the segmentation method [10]. Nevertheless, this issue highlights the importance of 

further investigating features based on semi-automatic and automatic segmentation. 

 

In addition, although several other features from FOS, GLCM, Shape and morphological features, GLSZM, and 

NGTDM categories had moderate or good reproducibility, their analyses were not statistically significant. 

However, it has been reported in a systematic review that FOS features provide the most robust results among the 

radiomics features, even though the Uniformity feature was the only one with good reproducibility [18]. 

Moreover, Kurtosis, another feature of FOS, showed significant reproducibility according to another study and 

had a high prognostic value in predicting the survival of patients with PCa [19]. In another study, the GLSZM 

feature High Gray-level Emphasis was also determined to have high reproducibility, accurately distinguish tumors 

with a Gleason score higher than eight, and predict the involvement of distant lymph nodes [20]. Among the 

GLCM category, Entropy-based features also demonstrated high reproducibility for PSA changes, PCa diagnosis, 

and recurrence [21]. Additionally, another study found that Histo_Entropy, a measure of entropy-based tissue 

properties, demonstrated the highest sensitivity and specificity in identifying metastatic PCa. However, Small-

zone Low Grey-level Emphasis and HISTO_energy Uniformity showed the most substantial predictive values for 

lymph node involvement  [22].  

 

Furthermore, analyzing radiomic characteristics in PSMA-PET/CT images across multiple studies has produced 

diverse outcomes due to variations in device types, settings, image acquisition techniques, segmentation 

methodologies, and definitions of tissue features. Consequently, interpreting the results poses a challenge [18, 23-

25]. Furthermore, in contrast with previous studies, we focused more on PCa metastasis to lymph nodes and 

potential target organs, which can explain the differences in results. Nevertheless, assessing the accuracy of our 

findings and the reproducibility of extracted features in other centers and device models and settings is necessary. 

One of the limitations of the current study is the examination of PET/CT images in a single center obtained from 

a single device model. Furthermore, assessing the dependability of the described highly consistent characteristics 

in differentiating between healthy/benign tissues and malignant/metastatic lesions is crucial in determining which 

characteristics are suitable for machine learning models based on PSMA-PET/CT.  

 

Besides, it cannot be confidently stated that the current results would yield similar results on other real-life datasets 

of metastatic PCa, as radiomics features are generally influenced by various clinical and imaging-related factors. 

Therefore, we recommend using features from our analysis in future studies. Furthermore, the agreement rate 

between the said features and biopsy results must be determined in future studies. Ultimately, we conclude that 

three features, low gray-level emphasis, low gray-level run emphasis, and long-run low gray-level emphasis, have 

the highest reproducibility and potential for detecting metastatic PCa. 
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Tables 

Table 1. Features extracted from PET-CT images based on their categories 

Extracted features 
 

First-order 

statistics 

(FOS) 

Gray-level co-

occurrence 

matrix 

(GLCM) 

Gray-level 

run length 

matrix 

(GLRLM) 

Shape and 

morphologica

l features 

Gray-

Level Size 

Zone 

Matrix 

(GLSZM) 

Gray-level 

dependenc

e matrix 

(GLDM) 

Neighborin

g gray-tone 

difference 

matrix 

(NGTDM) 

 

Energy 
Autocorrelatio

n 

Short-run 

emphasis 

(SRE) 

VoxelVolume 

Small Area 

Emphasis 

(SAE) 

Small 

Dependenc

e Emphasis 

(SDE) 

Coarseness  

Total 

Energy 
Joint average 

Long-run 

emphasis 

(LRE) 

MeshVolume 

Large Area 

Emphasis 

(LAE) 

Large 

Dependenc

e Emphasis 

(LDE) 

Contrast  

Entropy 
Cluster 

prominence 

Gray-

Level 

Non-

Uniformity 

(GLN) 

Surface area 

Gray-

Level 

Non-

Uniformity 

(GLN) 

Dependenc

e Non-

Uniformity 

(DN) 

Busyness  

Minimum Cluster shade 

Gray-

Level 

Non-

Uniformity 

Normalize

d (GLNN) 

Surface area 

to volume 

ratio 

Size-Zone 

Non-

Uniformity 

(SZN) 

Dependenc

e Non-

Uniformity 

Normalized 

(DNN) 

Complexity  

10th 

percentile 

Cluster 

tendency 

Run 

Length 

Non-

Uniformity 

(RLN) 

Sphericity 

Size-Zone 

Non-

Uniformity 

Normalize

d (SZNN) 

Gray-level 

variance 

(GLV) 

Strength  

90th 

percentile 
Contrast 

Run 

Length 

Non-

Uniformity 

Normalize

d (RLNN) 

Spherical 

disproportion 

Zone 

Percentage 

(ZP) 

Dependenc

e variance 

(DV) 

  

Maximum Correlation 

Run 

percentage 

(RP) 

Maximum 3D 

diameter 

Gray-level 

variance 

(GLV) 

Dependenc

e entropy 

(DE) 

  

Mean 
Difference 

average 

Gray-level 

variance 

(GLV) 

Maximum 2D 

diameter 

(slice) 

Zone 

variance 

(ZV) 

Low Gray-

Level 

Emphasis 

(LGLE) 

  

Median 
Difference 

entropy 

Run 

variance 

(RV) 

Maximum 2D 

diameter 

(column) 

Zone 

entropy 

(ZE) 

High Gray-

Level 

Emphasis 

(HGLE) 

  

Interquartil

e range 

Difference 

variance 

Run 

entropy 

(RE) 

Maximum 2D 

diameter 

(row) 

Low Gray-

Level 

Zone 

Emphasis 

(LGLZE) 

Small 

Dependenc

e Low 

Gray-Level 

Emphasis 

(SDLGLE) 
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Range Joint energy 

Low Gray-

Level Run 

Emphasis 

(LGLRE) 

Major axis 

High 

Gray-

Level 

Zone 

Emphasis 

(HGLZE) 

Small 

Dependenc

e High 

Gray-Level 

Emphasis 

(SDHGLE) 

  

Mean 

absolute 

deviation 

(MAD) 

Joint entropy 

High 

Gray-

Level Run 

Emphasis 

(HGLRE) 

Minor axis 

Small Area 

Low Gray-

Level 

Emphasis 

(SALGLE) 

Large 

Dependenc

e Low 

Gray-Level 

Emphasis 

(LDLGLE) 

  

Robust 

mean 

absolute 

deviation 

(rMAD) 

Informal 

measure of 

correlation 

(IMC) 1 

Short-Run 

Low Gray-

Level 

Emphasis 

(SRLGLE) 

Least axis 

Small Area 

High 

Gray-

Level 

Emphasis 

(SAHGLE

) 

Large 

Dependenc

e High 

Gray-Level 

Emphasis 

(LDHGLE) 

  

Root mean 

squared 

(RMS) 

Informal 

measure of 

correlation 

(IMC) 2 

Short-Run 

High 

Gray-

Level 

Emphasis 

(SRHGLE

) 

Elongation 

Large Area 

Low Gray-

Level 

Emphasis 

(LALGLE

) 

   

Standard 

deviation 

Inverse 

difference 

moment 

(IDM) 

Long-Run 

Low Gray-

Level 

Emphasis 

(LRLGLE) 

Flatness 

Large Area 

High 

Gray-

Level 

Emphasis 

(LAHGLE

) 

   

Skewness 

Inverse 

Difference 

Moment 

Normalized 

(IDMN) 

Long-Run 

High 

Gray-

Level 

Emphasis 

(LRHGLE

) 

     

Kurtosis 
Inverse 

difference (ID) 
      

Variance 

Inverse 

Difference 

Normalized 

(IDN) 

      

Uniformity 
Inverse 

variance 
      

 Maximum 

probability 
      

 Sum average       

 Sum entropy       

 Sum of 

squares 
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Table 2. Demographic and clinical characteristics of participants 

Characteristic Participants No. = 150 

Age (years), mean ± SD 68.6 ± 7.08 

Weight (Kilograms), mean ± SD 73.19 ± 10.46 

PSA level at diagnosis (ng/ml), mean ± SD  6.5 ± 12.2 

Mediastinal Blood Pool SUV, mean ± SD 1.24 ± 0.27 

Current staging, No. (%) 
 

Unknown 1 (0.7%) 

Initial staging 30 (20%) 

Restaging 119 (79.3%) 

History of prostatectomy, No. (%) 
 

Unspecified 4 (2.7% ) 

Negative 56 (37.3%) 

Positive 90 (60%) 

Latest PSA level, No. (%) 
 

Below 20 ng/ml 132 (93%) 

Above 20 ng/ml 10 (7%) 

Abbreviations: SUV, Standardized Uptake Value; PSA, Prostate Specific Antigen 

 

Table 3. Intraclass correlation coefficient of the extracted features 

Feature ICC 
95% CI of ICC 

P-value 
lower limit upper limit 

First-order statistics (FOS) 

Energy 0.241 -3.972 0.999 0.273 

Total Energy 0.241 -3.972 0.999 0.273 

Entropy 0.197 -4.261 0.999 0.286 

Minimum 0.552 -1.937 1 0.161 

10th percentile 0.366 -3.156 0.999 0.233 

90th percentile -0.487 -8.744 0.998 0.428 

Maximum -22.84 -159.306 0.975 0.841 

Mean -3.413 -27.921 0.995 0.643 

Median -7.071 -51.895 0.992 0.731 

Interquartile range 0.421 -2.794 0.999 0.213 

Range -9.062 -64.942 0.99 0.758 

Mean absolute deviation 

(MAD) 
0.11 -4.831 0.999 0.31 

Robust Mean absolute 

deviation (rMAD) 
0.373 -3.106 0.999 0.23 

Root Mean squared 

(RMS) 
-2.438 -21.534 0.996 0.6 

Skewness -3.437 -28.079 0.995 0.643 

Kurtosis 0.165 -4.474 0.999 0.295 

Variance 0.21 -4.18 0.999 0.283 

Uniformity 0.682 -1.081 1 0.101 

Gray-level co-occurrence matrix (GLCM) 

Autocorrelation 0.254 -3.886 0.999 0.269 

Joint average -0.285 -7.424 0.999 0.395 

Cluster prominence 0.278 -3.734 0.999 0.262 

Cluster shade -1.727 -16.871 0.997 0.556 

Cluster tendency 0.185 -4.343 0.999 0.29 

Contrast -4.138 -32.675 0.995 0.667 

Correlation -10.352 -73.401 0.988 0.772 

Difference average -2.797 -23.884 0.996 0.617 

Difference entropy -2.074 -19.145 0.997 0.579 

Difference variance -270.435 -1777.92 0.722 0.953 

Joint energy 0.478 -2.42 0.999 0.191 
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Joint entropy 0.303 -3.567 0.999 0.254 

Informal measure of 

correlation (IMC) 1 
-21.412 -145.883 0.977 0.836 

Informal measure of 

correlation (IMC) 2 
-7.586 -55.271 0.991 0.739 

Inverse difference 

moment (IDM) 
-0.017 -5.667 0.999 0.341 

Inverse Difference 

Moment Normalized 

(IDMN) 

-793.773 -5207.76 0.186 0.972 

Inverse difference (ID) -0.307 -7.567 0.999 0.399 

Inverse Difference 

Normalized (IDN) 
-50.082 -333.78 0.948 0.891 

Inverse variance -4.581 -35.578 0.994 0.68 

Maximum probability 0.561 -1.874 1 0.157 

Sum average -0.285 -7.424 0.999 0.395 

Sum entropy 0.238 -3.995 0.999 0.274 

Sum of squares 0.175 -4.404 0.999 0.292 

Gray-level run length matrix (GLRLM) 

Short-run emphasis 

(SRE) 
0.478 -2.419 0.999 0.191 

Long-run emphasis 

(LRE) 
0.347 -3.28 0.999 0.24 

Gray-Level Non-

Uniformity (GLN) 
0.408 -0.802 0.929 0.167 

Gray-Level Non-

Uniformity Normalized 

(GLNN) 

-0.208 -6.918 0.999 0.381 

Run Length Non-

Uniformity (RLN) 
0.588 -1.342 1 0.132 

Run Length Non-

Uniformity Normalized 

(RLNN) 

0.327 -3.413 0.999 0.246 

Run percentage (RP) 0.521 -2.14 1 0.174 

Run variance (RV) 0.355 -3.228 0.999 0.237 

Run entropy (RE) -0.106 -6.249 0.999 0.36 

Low Gray-Level Run 

Emphasis (LGLRE) 
0.799 -0.349 1 0.047 

High Gray-Level Run 

Emphasis (HGLRE) 
0.26 -3.848 0.999 0.268 

Short-Run Low Gray-

Level Emphasis 

(SRLGLE) 

0.79 -0.412 1 0.052 

Short-Run High Gray-

Level Emphasis 

(SRHGLE) 

0.269 -3.789 0.999 0.265 

Long-Run Low Gray-

Level Emphasis 

(LRLGLE) 

0.801 -0.307 1 0.045 

Long-Run High Gray-

Level Emphasis 

(LRHGLE) 

-0.116 -6.313 0.999 0.362 

Shape and morphological features 

Voxel Volume 0.588 -1.697 1 0.145 

Mesh Volume 0.589 -1.697 1 0.145 

Surface area 0.533 -2.06 1 0.169 
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Surface area to volume 

ratio 
0.143 -4.616 0.999 0.301 

Sphericity -26.783 -181.083 0.972 0.853 

Maximum 3D diameter -0.028 -5.912 0.999 0.345 

Maximum 2D diameter 

(slice) 
-0.14 -6.472 0.999 0.367 

Maximum 2D diameter 

(column) 
0.401 -3.025 0.999 0.223 

Maximum 2D diameter 

(row) 
-3.589 -29.855 0.995 0.65 

Major axis -0.795 -10.761 0.998 0.47 

Minor axis 0.628 -1.503 1 0.129 

Least axis -0.536 -9.332 0.998 0.437 

Elongation .359c -3.199 0.999 0.235 

Flatness -0.083 -6.096 0.999 0.356 

Gray-Level Size Zone Matrix (GLSZM) 

Small Area Emphasis 

(SAE) 
-2.716 -23.351 0.996 0.613 

Large Area Emphasis 

(LAE) 
0.452 -2.591 0.999 0.202 

Gray-Level Non-

Uniformity (GLN) 
0.408 -0.802 0.929 0.167 

Gray-Level Non-

Uniformity Normalized 

(GLNN) 

-0.208 -6.918 0.999 0.381 

Size-Zone Non-

Uniformity (SZN) 
0.23 -4.049 0.999 0.277 

Size-Zone Non-

Uniformity Normalized 

(SZNN) 

-1.505 -15.415 0.997 0.539 

Zone Percentage (ZP) -0.941 -11.721 0.998 0.487 

Zone variance (ZV) 0.452 -2.593 0.999 0.202 

Zone entropy (ZE) -5.042 -38.595 0.994 0.691 

Low Gray-Level Zone 

Emphasis (LGLZE) 
0.084 -5.001 0.999 0.317 

High Gray-Level Zone 

Emphasis (HGLZE) 
0.261 -3.843 0.999 0.267 

Small Area Low Gray-

Level Emphasis 

(SALGLE) 

-0.495 -8.797 0.998 0.429 

Small Area High Gray-

Level Emphasis 

(SAHGLE) 

0.276 -3.748 0.999 0.263 

Large Area Low Gray-

Level Emphasis 

(LALGLE) 

-0.495 -8.797 0.998 0.429 

Large Area High Gray-

Level Emphasis 

(LAHGLE) 

0.276 -3.748 0.999 0.263 

Gray-level dependence matrix (GLDM) 

Small Dependence 

Emphasis (SDE) 
-0.856 -11.167 0.998 0.477 

Large Dependence 

Emphasis (LDE) 
0.486 -2.368 0.999 0.188 

Dependence Non-

Uniformity (DN) 
0.452 -2.118 0.999 0.189 

https://pspac.info/index.php/dlbh/article/view/134


 

年 2025 體積 52問題 4  
71 DOI: 10.46121/pspc.52.4.6 

 

Dependence Non-

Uniformity Normalized 

(DNN) 

-2.002 -18.675 0.997 0.575 

Dependence variance 

(DV) 
0.47 -2.475 0.999 0.195 

Dependence entropy 

(DE) 
0.212 -4.166 0.999 0.282 

Low Gray-Level 

Emphasis (LGLE) 
0.906 0.462 1 0.003 

High Gray-Level 

Emphasis (HGLE) 
0.26 -3.849 0.999 0.268 

Small Dependence Low 

Gray-Level Emphasis 

(SDLGLE) 

-203.302 -1337.951 0.791 0.945 

Small Dependence High 

Gray-Level Emphasis 

(SDHGLE) 

0.292 -3.641 0.999 0.258 

Large Dependence Low 

Gray-Level Emphasis 

(LDLGLE) 

0.747 -0.66 1 0.07 

Neighboring gray-tone difference matrix (NGTDM) 

Coarseness -7.119 -55.317 0.992 0.733 

Contrast -4.138 -32.675 0.995 0.667 

Busyness 0.522 -2.132 1 0.174 

Complexity -0.109 -6.27 0.999 0.361 

Strength -6.866 -50.555 0.992 0.728 

Abbreviations: ICC, Intraclass correlation coefficient; CI, Confidence interval. 
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Figure 3 

 

Figure legends 

Figure 1. Study's phases and steps, along with PET/CT images used for segmentation 

Figure 2. Intraclass correlation coefficient (ICC) of the most repeatable extracted radiomics features 

Figure 3. Number of features with excellent, good, moderate, and poor reproducibility 
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