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ABSTRACT:

Machine learning techniques are not yet widely applicable in the field of malware detection, especially because
of data heterogeneity, privacy issues, and the overfitting problem of the model. The presented paper introduces
an innovative federated learning framework that combines CNN-based models with Sharpness Aware
Minimization (SAM) and Monte Carlo Dropout (MC-Dropout) that overcome these issues. Particularly, the
framework is effective operating in decentralized and non-I1D settings since it encourages flat minima in the loss
landscape, thus boosting model generalization and robustness. Also, predictive uncertainty can be measured due
to the utilization of MC-Dropout, a crucial feature when it comes to enhancing the reliability of a decision in the
field of cybersecurity. Experimental findings confirm that the suggested method remains considerably superior to
the traditional techniques, having high levels of accuracy (up to 99.86%) and precision (99.87%) along with the
meaningful estimation of uncertainties. The prospect of unifying the concepts of sharpness-aware optimization
and uncertainty quantification under a federated architecture presents a potential solution towards having reliable
and privacy-preserved malware detection in heterogenous operational environments.

INTRODUCTION

The wide-spread development of digital infrastructure has also caused a similar growth of cyber threats, in
particular the occurrence of malware. Malware, Malicious software is a heterogeneous category of programs or
scripts that include viruses, worms, and trojans, as well as spyware that enter, harm, or otherwise paralyze a
computer system without the owner’s authorization [1-3]. Given that the sophistication and obfuscation of the
modern malware is increasing, finding proper and scalable detection mechanisms has become an urgent need in
cybersecurity research. The existing detection methods, especially signature-based systems, prove ineffective in
the identification of novel or obfuscated threats, and thus a paradigm towards the usage of machine learning (ML)-
based detection frameworks has been identified [4]. Specifically, Convolutional Neural Networks (CNNs) have
become an effective solution to malware classification especially when executable binaries are converted into
image-like forms [5].

Although CNNs have shown to be very accurate in detecting complicated patterns in malware image data, their
practicality in mass and privacy-sensitive environment is limited. Training paradigms that involve centralization
usually involve the consolidation of large volumes of data in a central server which poses significant threats in
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terms of data privacy, ownership and regulation [6,7]. To address such issues, a new approach to decentralized
training, Federated Learning (FL) has been proposed. FL helps inferentially robotize the training of local models
at the edge devices or distributed nodes without moving the raw data, thus providing a potential way to privacy-
preserving machine learning in delicate fields like healthcare, finance and cybersecurity [8].

Federated Learning has various benefits: it does not expose the users to the privacy invasion due to the retention
of the raw data on the local level and minimizes the risks of the centralized data storage manner, as well as makes
it easier to collaborate between dispersed stakeholders without providing them with sensitive data [9].
Nevertheless, FL has also some challenges such as statistical heterogeneity of data between different clients (non-
IID data), overhead in communication, and convergence of models. Such issues may cause a slowdown in the
performance of global models, particularly in such tricky domains as malware detection, where the data
distribution can differ significantly between the organizations and devices [10,11].

Model uncertainty is another important but poorly addressed concern in federated malware identification. In
security applications, simple production of a label is not enough, the confidence in the decision must be measured
as well. In extreme situations, i.e., detecting zero-day malware or ransomware, the system needs to signal that it
is correct in its decisions so that the correct response can be taken. Sadly, the vast majority of deep learning models
in the traditional sense are deterministic and they lack the ability to estimate the uncertainty in their parameters
which makes them hard to deploy in critical settings where reliability and explainability are paramount [12].

Addressing these gaps, this paper proposes a novel Sharpness-Aware Federated Learning framework designed to
enhance malware classification performance under heterogeneous and privacy-sensitive conditions. Our approach
incorporates Sharpness-Aware Minimization (SAM) at the client level to guide models toward flatter minima in
the loss landscape, improving generalization and reducing sensitivity to local data perturbations caused by non-
11D distributions. In parallel, the framework integrates Monte Carlo Dropout (MC-Dropout) during inference to
quantify predictive uncertainty without incurring heavy computational costs or architectural complexity.
Furthermore, to increase robustness in real-world deployment, the architecture supports asynchronous federated
updates, mitigating the effects of client dropout and communication failures.

The major contributions of this study include:
1. Proposing a Sharpness-Aware Federated Learning Framework for Malware Detection under Data
Heterogeneity:
The proposed framework leverages sharpness-aware optimization to guide local models toward flatter regions in
the parameter space. This approach mitigates overfitting and client drift arising from non-11D data distributions in
noisy and heterogeneous environments.
2. Uncertainty Modeling through Monte Carlo Dropout (MC-Dropout):
By integrating MC-Dropout, the framework enables estimation of predictive variance and entropy, thereby
equipping the malware detection system with the ability to assess the confidence level of its decisions. This
enhancement significantly improves the reliability and trustworthiness of the model.
3. Design and Implementation of a Fault-Tolerant Asynchronous Distributed Update Mechanism for Local
Nodes:
The model training and update processes are carried out asynchronously and independently across local clients.
This design ensures that the training process remains uninterrupted even in the event of local node failures, thereby
enhancing the system's scalability and robustness in real-world distributed environments.
4. Simultaneous Integration of Sharpness-Aware Minimization (SAM) and MC-Dropout in a Unified
Federated Framework:
For the first time, the proposed method combines sharpness-aware optimization (SAM) and uncertainty modeling
via MC-Dropout within a unified federated learning system. This hybrid strategy improves both the accuracy and
stability of the model in heterogeneous environments, while also enabling reliable uncertainty estimation—jointly
boosting both the performance and dependability of the malware detection system.

RELATED WORKS

In [13] authors present SIM-FED, a novel framework that aims at detecting malware in the Internet of Things
(10T) contexts. In such a way, this solution is based on a combination of deep learning and federated learning to
allow privacy-preserving analysis, which effectively prevents data sharing and increases security in a
decentralized context. The model uses a lean 1D-CNN model with hyperparameters tuned, the slightest
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preprocessing as well as a computational load. A number of federated aggregation algorithms are considered,
FedAvg being finally selected to combine local model outputs. Evaluation shows that SIM-FED outperforms the
current available models of deep and federated learning in all terms with a remarkable rate of accuracy at 99.52
percent.

In [14] authors consider the use of federated learning (FL) to build and share aggregated deep neural networks
(DNNSs) between independent, federated organizations. Their solution presupposes that every organization uses
its own malware analysis platform in a Security Operations Center (SOC), and trains on them local DNNs on
company-specific data. It is a design based on a cross-silo FL framework in which these locally trained models
are integrated into a global DNN, further shared with all participants so that collaborative malware detection can
be performed without sharing any raw data or features. This federated method is able to reach an accuracy that is
as high as a non-federated and centralized DNN and goes over 93%.

In [15] authors study the feasibility of federated learning as a privacy-preserving alternative to classical centralized
machine learning. Their work assesses the effectiveness of FL-based models against traditional non-federated
methods that work on CIC-MalMem-2022. There were 22 models that were created, including both the use of
feedforward neural networks and long short-term memory (LSTM) architectures, of which four models were
trained non-federatedly. These results mean that federated learning provides high performance scores - an
accuracy of 0.999 on binary-classification and 0.845 on multiclassification, even in cases where the distributions
of users vary.

In [16] authors propose a malware detection model by using a simplified convolutional neural network (CNN)
structure. Promoting the principle of minimalism, the proposed model is expected to have good classification
results, despite the presence of imbalanced data. The main idea is to investigate the impact of different malware
image sizes (32x32, 64x64, 128x128 and 256x256) have on the results of the detection. The findings indicate that
reduced image resolutions, especially those of 3232 pixels, have better detection efficiency with accuracy of
99.601 percent. In addition, those which were developed using these smaller-sized images allowed fewer
computational resources, which shows the appropriateness of this architecture in restricted resource scenarios.

In [17] authors suggest the convolutional neural network (CNN) called Image-based Malware Classification with
Multi-scale Kernels (IMCMK) to improve the ability to detect malware variants by incorporating multi-scale
convolutional kernels. The most significant part of the model is the Multi-scale Kernels (MK) block that consists
of both large and small kernel convolutions and ShortCut connection to enhance the performance of classification.
As a means to alleviate the computing overhead that arises through the large-sized kernels, the authors propose a
Multi-scale Kernel Fusion (MKF) mechanism that minimizes overhead of parameters. By experimental results, it
can be proved that IMCMK can perform high on malware family classification with an accuracy of 99.25 which
is higher compared to other existing state-of-the-art methods.

Authors in [18] integrate federated learning and incremental learning to maintain privacy of users but enhance
detection. Federated learning is employed to train a Multi-Layer Perceptron (MLP) model on decentralized
devices without exchange of raw data, and stacking is an ensemble learning technique employed to allow
incremental updates to the trained model. With CICMalDroid 2020 dataset, which are a set of static features, the
proposed framework attains an accuracy of 96.49 percent.

In [19] authors introduce a new detection framework that exploits grey-scale image representation of malware
along with an autoencoder-based deep learning model. The approach checks the possibility of applying
reconstruction errors of the autoencoder to classify benign and malicious software, and harnessing dimensionality
reduction aspect of the model to classify a task. The experiments implemented on a custom Android dataset prove
that the model has an accuracy of 96% in detecting, as well as an F-score of nearly 96 %, which out-competes a
number of traditional machine learning techniques.

Authors in [20] introduce a new vision-based methodology of 10T malware detection and classification in multiple
classes with the help of deep transfer learning. The technique employs fine-tuning and ensembling techniques to
improve performance without demolishing models and starting afresh. Particularly, it combines three well-trained
CNN networks ResNet18, MobileNetV2, and DenseNet161 through a random forest voting process. The findings
demonstrate that the model yielded 98.74 precision, 98.67 recall, 98.79 specificity, 98.70 fl-score, 98.65
Matthews correlation coefficient (MCC), 98.68 accuracy with a mean of 672 milliseconds per sample.
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In [21] authors introduce hybrid deep learning architecture where VGG-16 and ResNet-50 will be combined to
fight malware through improved classification. This combined model uses the merits of both architectures in order
to enhance the accuracy of detection. It is tested on three reference datasets such as Microsoft BIG 2015, Malimg
and MaleVis and the experimental results demonstrate its superior performance over the recent approaches
99.28% accuracy.

In [22] authors propose using a Convolutional Neural Networks (CNN) and Transformer-based detection
mechanism to enhance efficiency and classification succinctness of malicious codes. This model presents a
modification scheme which is a fusion module which redesigns the network to lower memory access expenses by
eliminating residual connections. Also, during training by linear methods, this method uses overparametrization
and deep kernel convolution training methods to increase precision. The authors preprocess data by using pixel-
wise normalization of the size of the images and data augmentation to deal with loss of texture in the images due
to scaling and the problem of class imbalance, which improves the representational power of the data features and
prevents overfitting. As the experimental results have indicated, this hybrid model performs better than the recent
state-of-the-art malicious code detection techniques in terms of accuracy and robustness.

PROPOSED METHOD

This work presents a novel federated learning framework for malware detection based on Convolutional Neural
Networks (CNNSs) in heterogeneous environments. The proposed framework, grounded in CNN-based federated
learning, is specifically designed to mitigate the issues posed by decentralized and non-lIID data, which are
common in real-world malware detection scenarios. Traditional federated learning methods, such as FedAvg,
often suffer from significant performance degradation when client data are noisy, structurally diverse, or
statistically non-identical. These issues typically lead to local overfitting and client drift—where local models
diverge significantly from the global model. Such inconsistency across clients hampers convergence and
deteriorates the stability of the final global model.

To address these challenges, our framework incorporates a Sharpness-Aware Minimization (SAM) approach in
local training. Instead of relying on standard optimization techniques, SAM directs model parameters toward
flatter minima in the loss landscape, thereby reducing sensitivity to noise and improving generalization. In the
proposed system, every client trains a lightweight CNN using its local dataset. During training, rather than
applying straightforward gradient updates, the loss function is first evaluated under a small perturbation that
increases sharpness, and the final gradients are then computed in this perturbed region. This strategy encourages
the local model to avoid sharp minima and stabilize within flatter, more generalizable regions. Model data are
transmitted to the central server for aggregation when local training is finished. Until the global model converges,
this federated training procedure is repeated across a number of communication cycles. To further enhance model
reliability, Monte Carlo Dropout (MC-Dropout) is employed in the final stage to quantify predictive uncertainty.
Unlike conventional dropout, which is only active during training, MC-Dropout remains enabled during inference.
This approach is particularly beneficial in heterogeneous or noisy environments, where data uncertainty is high.
It helps reduce the risk of incorrect predictions, increases system reliability, and strengthens the model’s resilience
under uncertain or noisy conditions. A conceptual overview of the proposed sharpness-aware federated learning
system with CNNs, involving k clients, a central server, and a global model G, is illustrated in Figure 1.
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Figure 1. A conceptual overview of the proposed sharpness-aware federated learning system with CNNs

3.1. Base CNN Model Design

In this study, to detect and classify malware based on binary image representations from the Mallmg dataset, a
baseline Convolutional Neural Network (CNN) architecture has been designed. The network is structured to
hierarchically extract both low-level and high-level features from the input images, thereby enabling accurate
classification. The architecture of the proposed baseline CNN model is illustrated in Figure 2.

/ Classification
Layer
=3 S = = EC ﬂ
-]

Malware Image CONV1  POOLING1 CONV2  POOLING2 CONV3 POOLINGx Softmax
e Dropout
Flatten P=0.2

Figure 2. Architecture of the baseline CNN model

The model consists of three repeated blocks of Conv2D and MaxPooling2D layers.

The first block starts with a ReLU activation function after a convolutional layer with 32 (3x3) filters.
Convolutional layers, through fixed-size filters (in this case, 3x3), extract local image features such as edges,
corners, and texture patterns. Each convolutional operation, combined with a bias term, produces a new feature
map from the input. The layer’s operation can be mathematically expressed as:

0k (i,)) = o(Bec, TMZEINZG I (i + mj + 1) - Wy (m.n) + by) 1)

Where; I.. is the input image on channel ¢, W, . is the filter corresponding to channel ¢ and output channel k, by is
the bias associated with filter k, and ¢ (-)is the ReLU activation function defined as o(x) = max(0. x). The output
is then passed through a MaxPooling2D layer with a 2x2 window, which reduces the spatial dimensions (height
and width) of the feature maps. This operation helps avoid overfitting and enhances the system’s robustness to
small spatial shifts. The pooling operation is defined as:
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P(i,j) = Orsngé(pO(i ‘p+m.j-p+n) (2)

0sn<p

Where 0 is the input to the pooling layer, p is the pooling window size, and P(i, j) is the maximum value in the
corresponding block. In subsequent stages, the number of filters is increased to 64 and then 128, while the same
convolution-pooling structure is maintained. This gradual increase in filters enhances the network’s capacity to
capture deeper and more abstract semantic features from the input images. The output of the final MaxPooling2D
layer is passed to a Flatten layer, which converts the multi-dimensional feature map into a one-dimensional vector
suitable for input to fully connected layers. Following this, a fully connected (Dense) layer with 128 neurons and
a ReLU activation function is used to combine the extracted features and learn non-linear relationships among
them. The output of each neuron in this layer is computed as:

h] = O_(Z‘?:l Wji X + bj) (3)

Here, x; is the i-th input feature, wy; is the weight connecting input neuron i to output neuron j, b; is the bias term,

and o denotes the ReLU function. To mitigate overfitting and enhance generalization, a Dropout layer with a
dropout rate of 0.5 is applied, randomly deactivating 50% of neurons during training. Its behavior can be expressed
as:

h;=17;-h; with 7; ~Bernoulli(1 — p) 4)

Where h; is the original neuron output, h; is the output after dropout, and r; is a binary mask sampled from a
Bernoulli distribution. Finally, the output layer consists of as many neurons as there are classes in the Mallmg
dataset and uses the Softmax activation function to convert the final outputs into a probability distribution over
the classes.

eZi

Softmax(z;) = ST

j:1ezj- ’

i=1,..,C 5)

Where z; is the input to neuron i in the output layer, and C is the total number of malware classes.

3.2. Federated learning model based on CNN

In this work, a federated CNN architecture is employed for the detection and classification of different classes of
malware. In the suggested model, many local CNNs (worker) perform malware classification and update their
parameters via a central server located at the master node. This decentralized structure means that even if a local
network fails or is disrupted, the overall system performance is unaffected. Moreover, since the learning rate is
updated through several independently running local networks, the architecture exhibits enhanced scalability and
can more effectively detect novel malware, thereby improving the overall detection accuracy. The federated neural
network operates as follows: initially, the dataset is partitioned into k subsets, where k corresponds to the number
of slave nodes. Each subset is then allocated to a respective slave node. During each stage of training, every slave
node classifies the images assigned by the master node and computes the error gradients. These gradients are then
sent back to the master node, which updates the network weights accordingly. The updated weights are
redistributed to the slave nodes, and this procedure continues until a specific number of iterations is achieved. The
structure of the federated CNN network is illustrated in Figure 3.

4 2025 #1553 [ 4 DOI: 10.46121/pspc.53.4.20



https://pspac.info/index.php/dlbh/article/view/138

). IS

-
N

Master Node

i

Classifier
Management

; - - ;
| : Task  Task :: Task Task: : Task  Task :;
. I( )--o( )II( )-.o( )I I( )ooo( )I.
E | 11 | I IE
: I Local 1 Local I I Local ';
: : Executor 1 : : Executor 2 : coe : Executor N : :
L 11 | I I
1 11 | I .
2 K I )
(| 11 | | I
| 11 | I 1
! : Data 1 Data 2 Data N I

Malware
Detection and
Classification

Figure 3. Architecture of the Federated CNN Network

3.3. Model Training Using SAM Algorithm

In this work, the training process for the CNN-based Federated Learning model is enhanced using the Sharpness-
Aware Minimization (SAM) optimization algorithm. SAM is designed to improve the generalization capability
of neural networks in non-IDD data environments by steering model updates toward flatter regions of the loss
landscape during training. This approach leads to improved stability and accuracy of the model.

SAM has demonstrated superior performance on non-11D datasets by reducing overfitting and enabling the model
to learn more robust parameters in the presence of heterogeneous data distributions. Unlike synchronous
approaches (e.g., Synchronous SGD or SSGD), where failure of any client can halt the entire training process, in
the proposed asynchronous training framework, each client trains independently. As a result, even if a client fails,
the training process continues with the remaining clients. This asynchronous design improves fault tolerance and
reduces the overall training time. Figure 4 demonstrates the update mechanism of the Federated CNN model
parameters.
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Figure 4. Federated CNN model's parameter updating procedure

Every worker node interacts with the central parameter server, as illustrated in Figure 4. All updates (including
gradients and learning rate adjustments) are sent from the clients to the server, where they are aggregated. In
general, weight updates in a federated system are computed as:

Wiy =W, — /12?21 A VVL] (6)

Where, A is a scaling factor and AW ; is the update vector from client j at i iteration.
In this work, SAM is used to perform local updates on each client through a two-step optimization process: First,
a perturbation vector € is computed to maximize the loss in the neighborhood of the current weights:

VL;(Wy) )

VL (W)

Where, p is a small constant controlling the perturbation magnitude. Then, the final gradient is computed using
the perturbed weights (W; + €):

Finally, the local parameter update at client j is:
Wis1j = W, — aAW; )
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where a denotes the learning rate, and L; is the loss function for client j. These updates are not applied directly to
the global parameter vector; instead, they are first aggregated on the central server and then reflected in the global
model. The key idea of SAM is that, instead of following the gradient in the direction of the current sharp
minimum, each client moves toward a direction that considers loss sharpness in the surrounding region. This
significantly improves the model's robustness to noisy and non-I1D data and enhances the overall performance.
Algorithm 1 illustrates the update process of the local models at the worker nodes using the SAM algorithm.
Algorithm 2 presents the update mechanism of the central server based on this algorithm in master node.
Algorithm 1: Weight Update Using the SAM Algorithm on the Client Side in Local Networks

Input: Clients E {ei......en}, Architecture of Base Convolutional Network, Initial Network weights, Control
parameter p.
Outcomes: Partial sharpness-aware gradient AW;
1. For any client e; in E apply
2. Load current parameters Wi from Global Server
Choose a uniformly distributed random sample s € {1, ..., b} from local database
Calculate standard gradient VL;(W;)
Compute perturbation vector:

_ VL]-(Wi)

L wpl
6. Compute sharpness-aware gradient at (W; + €):

AW, j = VL;(W; + €)

7. Transfer the partially computed gradient AW ; to the Global Server
8. End

o s

Algorithm 2: Weight Update in the Global Model
Input: Clients E {es......en}, Architecture of Base Convolutional Network, Initial Network weights.
Output: Global sharpness-aware gradient
1. Wait for deliver AW; ; from any Client ei € E
2. For each received AW; ; do
Accept the sharpness-aware gradient
3. Compute global gradient using:
Wiy =W; = /127=1A Wi;
4. Update W;,; and save in global server parameters
5. Transfer the updated global model W;_, to all workers

3.4. Uncertainty Modeling Using MC-Dropout in the Federated Network

In the final stage of the proposed method, Monte Carlo Dropout (MC-Dropout) is employed to model decision-
making uncertainty in the central model. This technique enables the estimation of a predictive distribution over
the model’s outputs without requiring complex Bayesian neural networks, making it particularly effective in
federated learning environments, where data is often heterogeneous and unreliable. Unlike traditional dropout
methods, where dropout is disabled during inference, MC-Dropout keeps the dropout mechanism active during
test time. By performing multiple forward passes over the same input sample with different random dropout
masks, the model can approximate a probabilistic distribution over the outputs.

Let x be the input data and f,,(x) the output of the model, for a model using dropout, the final prediction is
obtained by averaging the outputs from T stochastic forward passes:

9 ==Xl fur, () (10)

Where:

e T is the number of forward passes,

*  fw,(x) is the model output during the t-th pass with a random dropout.
To quantify the model's uncertainty, either the variance of the predictions or the entropy of the output distribution
can be used. The predictive variance is calculated as:

Var(§) = 2 Xy (fur, () — 9)? (11)
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If the model uses a softmax output layer, the entropy of the predicted distribution can also serve as an uncertainty
measure:

H®) = —X¢19c log(9) (12)

Where C is the number of classes, ¥ is the predicted probability for class c.

After performing MC-Dropout and computing either the variance or the entropy of the model’s predictions, the
system becomes capable of identifying input samples with high uncertainty. In other words, if a sample exhibits
high predictive variance or entropy, it implies that the model is less confident about its decision. Integrating MC-
Dropout into the central model of the federated architecture not only helps to preserve prediction accuracy, but
also enhances the reliability of the decision-making system. Algorithm 3 outlines the process of uncertainty
modeling using MC-Dropout in the federated learning system.

Algorithm 3: Pseudocode for Modeling Decision-Making Uncertainty Using MC-Dropout in a Federated
Network

Inputs:
- Central CNN model with dropout layers: fi, (x)
- Input sample: x
- Number of stochastic forward passes: T
- Number of classes: C
Outputs:
- Predictive mean: §
- Predictive variance: Var(¥)
- Predictive entropy: H(¥)
1. Initialize list of predictions: Y =]
2.Fort=1toTdo
3. Enable dropout during inference
4. Sample output from model: y, = f,(x) // Stochastic forward pass
Append y, to Y
. End For

o o

~

. Compute predictive mean:
~ 1
9 =230 fu, ()

8. Compute predictive variance:

Var(§) = = %=1 (fur,(x) — 9)?
9. Compute predictive entropy:
H(@) = — X&=1 9 10g(¥e)

10. Return 9, Var(9), H(®)

4. Experimental Results

The findings of the simulation of the suggested malware detection approach are shown in this section. For all
simulations, the Python programming environment was used. The Malimg malware image dataset was employed
for simulation purposes, with 70% of the data used for training and 30% used as the test set. To assess the
effectiveness of the proposed approach, Accuracy, Precision, Recall, and F1-score are employed.

4.1. Dataset

This study made use of the Malimg dataset. This dataset is publicly available and serves as a baseline for malware
classification on Kaggle. It includes 9,435 executable malware files that are divided into 25 malware families.
Using nearest-neighbor interpolation, these malware files have been transformed into 32x32 grayscale pictures.
Example images from three different malware classes are shown in Figure 5. Additionally, Table 1 lists all 25
malware classes along with their corresponding families.
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Table 1. Malware Classes in the Malimg Dataset

No Class Family No Class Family No Class Family

Cl Worm Allaple L C10  TDownloader Swizzot.gen!l  C19 Dialer Dialplatform B
C2 Worm Allaple A C11 TDownloader  Swizzor.genlE C20  TDownloader Dontovo A
C3  Worm Yuner A C12 Worm VB.AT C21  TDownloader Obfusca-tor.AD
C4  PWS Lolyda AA1 C13 Rogue Fakerean C22 Backdoor Agent.FYI
C5 PWS LolydaAA2 Ci14 Trojan Alueron.genlJ  C23  Worm Autol T Autorun K
C6 PWS Lolyda AA3 C15 Trojan Malex.gen!J C24 Backdoor Rbot!gen
C7 Trojan C2Lop.P C16 PWS Lolyda AT C25 Trojan Skintrim N
C8 Trojan C2Lop.genlg C17 Dialer Adialer.C

C9 Dialer Instantaccess C18  TDownloader Wintrim BX

Malex.gen!J

Wintrim.BX

Adialer.C

Figure 5. Example samples from three malware classes in the Malimg dataset

4.2. Evaluation Metrics
To evaluate the performance of the proposed method, the metrics Accuracy, Precision, Recall, and F1-score were
used. The calculation formulas for these metrics are shown in Equations (13) to (16):

_ (TP+TN)
Accuracy = (TP+FP+TN+FN) (13)
Precision = ——— (14)
TP
Recall = ——— - (15)
F1score = 2*(Recall*Prec.Ls'Lon) (16)
(Recall+Precision)

In the above equations, TP (True Positive) denotes the number of correctly identified positive cases, TN (True
Negative) the number of correctly identified negative cases, FP (False Positive) the number of incorrectly
identified positive cases, and FN (False Negative) the number of incorrectly identified negative cases.

4.3. Evaluation of the Proposed Method’s Performance

In this section, the effectiveness of the presented system is evaluated utilizing various assessment metrics,
focusing on the learning process, detection accuracy, the quality of the classification, and metrics related to
uncertainty estimation. Additionally, the efficacy of the suggested model is contrasted with various methods.

4.3.1. Evaluation of the Training Process
The loss function trend of the proposed approach over 40 training epochs is illustrated in Figure 6. As observed
in the graph, the loss value significantly decreases during the initial stages of training. Specifically, within the first
five epochs, the loss drops sharply from approximately 1.6 to below 0.1. This rapid decline indicates the model’s
effective and fast learning capability in extracting initial patterns from the input data. As the training progresses,
the downward slope of the loss curve gradually flattens, and the model approaches convergence. After
approximately 15 epochs, the loss reduction becomes minimal, oscillating around a value close to zero, indicating
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that the model has reached the saturation point of learning and its parameters have stabilized. Since the final loss
value is nearly zero, it can be concluded that the proposed model possesses a high learning capacity and is well-
adapted to the training data. Moreover, the absence of significant fluctuations or increases in the loss demonstrates
the model's stability and suggests that it does not suffer from overfitting.

Learning Curve (Loss)
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Figure 6. Learning curve based on the loss function

4.3.2. Evaluation of the Proposed Method in Terms of Receiver Operating Characteristic (ROC)

In machine learning, the performance of a binary classifier across various threshold values can be evaluated using
the Receiver Operating Characteristic (ROC) curve, which is plotted based on two key metrics: True Positive Rate
(TPR) and False Positive Rate (FPR). Figure 7 presents the ROC curve of the proposed malware detection method
by plotting TPR versus FPR for different decision thresholds. An ideal classifier will have an ROC curve that
leans toward the top-left corner, indicating a high TPR and low FPR. Conversely, a poor classifier will show a
curve near the bottom-right corner, reflecting a low TPR and high FPR. As shown in the figure, the ROC curve
for the proposed method is close to the top-left corner, which indicates that the classifier achieves a high TPR and
low FPR. Furthermore, the Area Under the Curve (AUC) for all classes—except for two—was found to be very
close to 1, reinforcing the effectiveness of the method.
Receiver Operating Characteristic for Test Data
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Figure 7. ROC curve of the proposed method
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4.3.3. Comparison of the Results

Based on the Accuracy measure, Table 2 compares the suggested approach with a number of previous research.
As can be observed, the proposed method outperforms all other approaches and achieves the highest accuracy in
malware detection. Specifically, the accuracy of the proposed model reaches 99.86%, which surpasses that of
other models such as MDC-RepNet (99.57%) and the hybrid ResNet50-VGG16 model (99.28%). Furthermore,
more traditional models such as Random Forest and Autoencoder achieve lower accuracies of 98.68% and
96.22%, respectively. These results demonstrate that the carefully designed architecture of the proposed model
plays a crucial role in enhancing its ability to learn discriminative features of malware samples. Therefore, it can
be concluded that the suggested method achieves remarkable accuracy, possesses significant potential for real-
world applications in cybersecurity and threat detection.

Table 2. Comparison of results in terms of Accuracy metric

Author Method Accuracy
XIAOFEI XING et al. [19] Auto Encoder 96.22
Atitallah et al. [20] Random Forest 98.68
Behera et al. [21] ResNet50-VGG16 99.28
Lietal. [22] MDC-RepNet? 99.57
- Presented 99.86

A comparative analysis based on three widely-used evaluation metrics: Precision, Recall, and F-score is presented
in Table 3. These metrics are essential for evaluating classification systems, especially in the domain of malware
detection. According to the results, the proposed method significantly outperforms competing models across all
three metrics. Specifically, the model achieves 99.87% Precision, 99.86% Recall, and 99.86% F-score. The values
indicate that the system is not only highly accurate in correctly identifying positive samples (Precision), but also
demonstrates strong sensitivity in detecting all actual positive instances (Recall). Additionally, the high F-score
confirms a well-balanced performance between precision and recall.

Compared to MDC-RepNet, which is the closest in terms of performance (Precision: 99.50%, Recall: 99.52%, F-
score: 99.51%), the proposed model provides noticeably higher precision and confidence. Other methods such as
ResNet50-VGG16 and Random Forest, while performing reasonably well, still fall short in all three metrics.

These findings confirm that the designed architecture of the proposed model has been highly effective in extracting
distinctive malware features and classifying them with high precision and completeness. This advantage provides
the proposed method with a competitive edge over prior models, making it more suitable for deployment in
sensitive and security-critical applications.

Table 3. Comparison of results in terms of Precision, Recall, and F-score metrics

Method Precision Recall F-score
Auto Encoder 96.19 96.21 96.20
Random Forest 98.70 98.64 98.67

ResNet50-VGG16 99.00 99.00 99.00
MDC-RepNet 99.50 99.52 99.51
Presented 99.87 99.86 99.86

4.3.4. Evaluation of Proposed Method Performance in Terms of Uncertainty

Figure 8 presents a box plot illustrating the uncertainty distribution across 25 different malware classes, derived
using the Monte Carlo Dropout (MC-Dropout) technique. The x-axis (Class Index) represents the malware class
numbers (1 to 25), while the y-axis (Standard Deviation of Predictions) indicates the average standard deviation
of the model’s predictions over 100 Monte Carlo iterations. This standard deviation serves as a measure of the
model’s uncertainty: higher standard deviation corresponds to higher uncertainty in the model's predictions for a
given class. In most classes, the standard deviation remains very low (ranging from near zero up to approximately
0.0007), which indicates a high level of model confidence in its classification outcomes. The lower edge of each
box in the plot represents the first quartile (Q1) or 25th percentile, and the upper edge indicates the third quartile

1 Structural Reparameterization and Multi-Scale Deep Convolutional Classifier Network
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(Q3) or 75th percentile of the calculated variances. The interquartile range (IQR) thus covers 50% of the prediction
variances.

For all classes, the box heights are consistently below 0.0003, further confirming the low levels of uncertainty.
Additionally, the median line (in red) is positioned at or near the bottom of each box, and there are no lower
whiskers, implying that the majority of standard deviation values are tightly concentrated near zero. In other
words, the central 50% of the prediction variances are heavily skewed toward the lower end, with the median
nearly coinciding with Q1. This indicates that the model made highly confident predictions with negligible
uncertainty for most instances in each class. When examining uncertainty across individual classes, it is evident
that classes 1, 2, 3,9, 10, 16, 17, 18, 22, and 23 exhibit especially low and stable uncertainty, reflecting the model’s
greater robustness in classifying these categories.

Uncertainty Distribution per Class (MC-Dropout)
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Figure 8. Uncertainty distribution in malware classification per class (based on MC-Dropout)

Figure 9 presents the uncertainty distribution over the test dataset. The x-axis shows the mean standard deviation
of predictions for each malware image, serving as an indicator of the model's uncertainty per predicti
on. The y-axis represents the frequency, i.e., the number of test samples falling within each uncertainty range.
As clearly depicted in the histogram, the distribution is heavily concentrated around extremely low standard
deviation values (close to zero). Specifically, nearly 2,300 test samples have a mean prediction standard deviation
near zero. This sharp peak near zero indicates that for the vast majority of predictions, the model exhibited minimal
uncertainty, hence demonstrating high confidence and consistency. The dense clustering at the lower end of the
uncertainty spectrum strongly supports the effectiveness and reliability of the proposed method in producing
robust and stable predictions. Only a small number of samples exhibit uncertainty in the range of 0.005 to 0.01,
which still reflects high model confidence. Overall, the histogram offers strong evidence that the model is capable
of effectively quantifying its uncertainty and maintains very high confidence across most of its prediction tasks.
Distribution of Prediction Uncertainty (Mean Std. Dev.)
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Figure 9. Uncertainty distribution in malware detection using the test dataset

4 2025 #1553 [ 4 DOI: 10.46121/pspc.53.4.20



https://pspac.info/index.php/dlbh/article/view/138

<

-~ Power Syste

CONCLUSION

The paper presents a new federated learning framework that is specifically adapted to CNN-based malware
detection, which sufficiently solves the problems of heterogeneous and decentralized data. The proposed system
guides the local models into flatter minima by embracing sharpness-aware minimization (SAM) and it helps in
overall generalization and the problem of overfitting and client drift that usually occurs in a non-I1D. scenario.
Also, the Monte Carlo Dropout (MC-Dropout) protocol can be incorporated to enable reliable uncertainty
estimation, so that the system could provide itself and the user with the degree of confidence about the predictions,
which is a highly-desirable property in cybersecurity. Scalability and the resilience of the system are also enhanced
with the use of asynchronous and fault-tolerant update mechanism that allows the system to continue running
throughout even in the event of possible client failure. Experimental assessments confirm that the suggested
framework attains higher detection precision, as much as 99.86%, and offers certain reliability in uncertainty
estimation, which bears witness to its applicability in real settings of malware detection. Overall, the combination
of federated learning, sharpness-aware optimization, and uncertainty modeling presents an interesting path to
establishing robust, privacy-protecting cybersecurity systems that can effectively work in a heterogeneous and
potentially noisy environment.
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